Author
Abstract
The Fisher market equilibrium for private goods and the Lindahl equilibrium for public goods are classic and fundamental solution concepts for market equilibria. While Fisher market equilibria have been well-studied, the theoretical foundations for Lindahl equilibria remain substantially underdeveloped. In this work, we propose a unified duality framework for market equilibria. We show that Lindahl equilibria of a public goods market correspond to Fisher market equilibria in a dual Fisher market with dual utilities, and vice versa. The dual utility is based on the indirect utility, and the correspondence between the two equilibria works by exchanging the roles of allocations and prices. Using the duality framework, we address the gaps concerning the computation and dynamics for Lindahl equilibria and obtain new insights and developments for Fisher market equilibria. First, we leverage this duality to analyze welfare properties of Lindahl equilibria. For concave homogeneous utilities, we prove that a Lindahl equilibrium maximizes Nash Social Welfare (NSW). For concave non-homogeneous utilities, we show that a Lindahl equilibrium achieves $(1/e)^{1/e}$ approximation to the optimal NSW, and the approximation ratio is tight. Second, we apply the duality framework to market dynamics, including proportional response dynamics (PRD) and t\^atonnement. We obtain new market dynamics for the Lindahl equilibria from market dynamics in the dual Fisher market. We also use duality to extend PRD to markets with total complements utilities, the dual class of gross substitutes utilities. Finally, we apply the duality framework to markets with chores. We propose a program for private chores for general convex homogeneous disutilities that avoids the "poles" issue, whose KKT points correspond to Fisher market equilibria. We also initiate the study of the Lindahl equilibrium for public chores.
Suggested Citation
Yixin Tao & Weiqiang Zheng, 2025.
"Fisher Meets Lindahl: A Unified Duality Framework for Market Equilibrium,"
Papers
2511.04572, arXiv.org, revised Dec 2025.
Handle:
RePEc:arx:papers:2511.04572
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.04572. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.