IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.00378.html
   My bibliography  Save this paper

Modeling Uncertainty in Integrated Assessment Models

Author

Listed:
  • Yongyang Cai

Abstract

Integrated Assessment Models (IAMs) are pivotal tools that synthesize knowledge from climate science, economics, and policy to evaluate the interactions between human activities and the climate system. They serve as essential instruments for policymakers, providing insights into the potential outcomes of various climate policies and strategies. Given the complexity and inherent uncertainties in both the climate system and socio-economic processes, understanding and effectively managing uncertainty within IAMs is crucial for robust climate policy development. This review aims to provide a comprehensive overview of how IAMs handle uncertainty, highlighting recent methodological advancements and their implications for climate policy. I examine the types of uncertainties present in IAMs, discuss various modeling approaches to address these uncertainties, and explore recent developments in the field, including the incorporation of advanced computational methods.

Suggested Citation

  • Yongyang Cai, 2025. "Modeling Uncertainty in Integrated Assessment Models," Papers 2511.00378, arXiv.org.
  • Handle: RePEc:arx:papers:2511.00378
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.00378
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.00378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.