IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.08268.html
   My bibliography  Save this paper

Multi-Agent Analysis of Off-Exchange Public Information for Cryptocurrency Market Trend Prediction

Author

Listed:
  • Kairan Hong
  • Jinling Gan
  • Qiushi Tian
  • Yanglinxuan Guo
  • Rui Guo
  • Runnan Li

Abstract

Cryptocurrency markets present unique prediction challenges due to their extreme volatility, 24/7 operation, and hypersensitivity to news events, with existing approaches suffering from key information extraction and poor sideways market detection critical for risk management. We introduce a theoretically-grounded multi-agent cryptocurrency trend prediction framework that advances the state-of-the-art through three key innovations: (1) an information-preserving news analysis system with formal theoretical guarantees that systematically quantifies market impact, regulatory implications, volume dynamics, risk assessment, technical correlation, and temporal effects using large language models; (2) an adaptive volatility-conditional fusion mechanism with proven optimal properties that dynamically combines news sentiment and technical indicators based on market regime detection; (3) a distributed multi-agent coordination architecture with low communication complexity enabling real-time processing of heterogeneous data streams. Comprehensive experimental evaluation on Bitcoin across three prediction horizons demonstrates statistically significant improvements over state-of-the-art natural language processing baseline, establishing a new paradigm for financial machine learning with broad implications for quantitative trading and risk management systems.

Suggested Citation

  • Kairan Hong & Jinling Gan & Qiushi Tian & Yanglinxuan Guo & Rui Guo & Runnan Li, 2025. "Multi-Agent Analysis of Off-Exchange Public Information for Cryptocurrency Market Trend Prediction," Papers 2510.08268, arXiv.org.
  • Handle: RePEc:arx:papers:2510.08268
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.08268
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    2. Hamid Moradi-Kamali & Mohammad-Hossein Rajabi-Ghozlou & Mahdi Ghazavi & Ali Soltani & Amirreza Sattarzadeh & Reza Entezari-Maleki, 2025. "Market-Derived Financial Sentiment Analysis: Context-Aware Language Models for Crypto Forecasting," Papers 2502.14897, arXiv.org, revised Mar 2025.
    3. Banerjee, Ameet Kumar & Akhtaruzzaman, Md & Dionisio, Andreia & Almeida, Dora & Sensoy, Ahmet, 2022. "Nonlinear nexus between cryptocurrency returns and COVID-19 news sentiment," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
    4. Kumar Kulbhaskar, Anamika & Subramaniam, Sowmya, 2023. "Breaking news headlines: Impact on trading activity in the cryptocurrency market," Economic Modelling, Elsevier, vol. 126(C).
    5. Vincent Gurgul & Stefan Lessmann & Wolfgang Karl Hardle, 2023. "Deep Learning and NLP in Cryptocurrency Forecasting: Integrating Financial, Blockchain, and Social Media Data," Papers 2311.14759, arXiv.org, revised Oct 2024.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim, Muhammad Mahmudul & Shah, Mohamed Eskandar & Noman, Abu Hanifa Md. & Yarovaya, Larisa, 2024. "Exploring asymmetries in cryptocurrency intraday returns and implied volatility: New evidence for high-frequency traders," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    2. Shaen Corbet & Les Oxley, 2023. "Investigating the Academic Response to Cryptocurrencies: Insights from Research Diversification as Separated by Journal Ranking," Review of Corporate Finance, now publishers, vol. 3(4), pages 487-528, September.
    3. Afees A. Salisu & Aviral Kumar Tiwari & Ibrahim D. Raheem, 2018. "Analysing the distribution properties of Bitcoin returns," Working Papers 058, Centre for Econometric and Allied Research, University of Ibadan.
    4. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    5. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    6. Hau, Liya & Zhu, Huiming & Shahbaz, Muhammad & Sun, Wuqin, 2021. "Does transaction activity predict Bitcoin returns? Evidence from quantile-on-quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    7. Białkowski, Jędrzej, 2020. "Cryptocurrencies in institutional investors’ portfolios: Evidence from industry stop-loss rules," Economics Letters, Elsevier, vol. 191(C).
    8. Lian, Yu-Min & Chen, Jun-Home, 2021. "Pricing virtual currency-linked derivatives with time-inhomogeneity," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 424-439.
    9. Syed Zwick, Hélène & Syed, Sarfaraz Ali Shah, 2019. "Bitcoin and gold prices: A fledging long-term relationship," MPRA Paper 92512, University Library of Munich, Germany.
    10. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    11. Sheng‐Tun Li & Kuei‐Chen Chiu & Chien‐Chang Wu, 2023. "Apply big data analytics for forecasting the prices of precious metals futures to construct a hedging strategy for industrial material procurement," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 942-959, March.
    12. Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.
    13. Vidal-Tomás, David & Ibañez, Ana, 2018. "Semi-strong efficiency of Bitcoin," Finance Research Letters, Elsevier, vol. 27(C), pages 259-265.
    14. Wang Guizhou & Zhang Si & Yu Tao & Ning Yu, 2021. "A Systematic Overview of Blockchain Research," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 205-238, June.
    15. Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
    16. George Milunovich, 2018. "Cryptocurrencies, Mainstream Asset Classes and Risk Factors: A Study of Connectedness," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 51(4), pages 551-563, December.
    17. Koray Caliskan, 2022. "The Elephant in the Dark: A New Framework for Cryptocurrency Taxation and Exchange Platform Regulation in the US," JRFM, MDPI, vol. 15(3), pages 1-18, March.
    18. Jeremy Eng-Tuck Cheah & Thong Dao & Haozhe Su, 2024. "Measuring cryptocurrency moment convergence using distance analysis," Annals of Operations Research, Springer, vol. 332(1), pages 533-577, January.
    19. Gronwald, Marc, 2019. "Is Bitcoin a Commodity? On price jumps, demand shocks, and certainty of supply," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 86-92.
    20. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.08268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.