IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.14897.html
   My bibliography  Save this paper

Market-Derived Financial Sentiment Analysis: Context-Aware Language Models for Crypto Forecasting

Author

Listed:
  • Hamid Moradi-Kamali
  • Mohammad-Hossein Rajabi-Ghozlou
  • Mahdi Ghazavi
  • Ali Soltani
  • Amirreza Sattarzadeh
  • Reza Entezari-Maleki

Abstract

Financial Sentiment Analysis (FSA) traditionally relies on human-annotated sentiment labels to infer investor sentiment and forecast market movements. However, inferring the potential market impact of words based on their human-perceived intentions is inherently challenging. We hypothesize that the historical market reactions to words, offer a more reliable indicator of their potential impact on markets than subjective sentiment interpretations by human annotators. To test this hypothesis, a market-derived labeling approach is proposed to assign tweet labels based on ensuing short-term price trends, enabling the language model to capture the relationship between textual signals and market dynamics directly. A domain-specific language model was fine-tuned on these labels, achieving up to an 11% improvement in short-term trend prediction accuracy over traditional sentiment-based benchmarks. Moreover, by incorporating market and temporal context through prompt-tuning, the proposed context-aware language model demonstrated an accuracy of 89.6% on a curated dataset of 227 impactful Bitcoin-related news events with significant market impacts. Aggregating daily tweet predictions into trading signals, our method outperformed traditional fusion models (which combine sentiment-based and price-based predictions). It challenged the assumption that sentiment-based signals are inferior to price-based predictions in forecasting market movements. Backtesting these signals across three distinct market regimes yielded robust Sharpe ratios of up to 5.07 in trending markets and 3.73 in neutral markets. Our findings demonstrate that language models can serve as effective short-term market predictors. This paradigm shift underscores the untapped capabilities of language models in financial decision-making and opens new avenues for market prediction applications.

Suggested Citation

  • Hamid Moradi-Kamali & Mohammad-Hossein Rajabi-Ghozlou & Mahdi Ghazavi & Ali Soltani & Amirreza Sattarzadeh & Reza Entezari-Maleki, 2025. "Market-Derived Financial Sentiment Analysis: Context-Aware Language Models for Crypto Forecasting," Papers 2502.14897, arXiv.org, revised Mar 2025.
  • Handle: RePEc:arx:papers:2502.14897
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.14897
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David L. John & Sebastian Binnewies & Bela Stantic, 2024. "Cryptocurrency Price Prediction Algorithms: A Survey and Future Directions," Forecasting, MDPI, vol. 6(3), pages 1-35, August.
    2. Ahmet Faruk Aysan & Erhan Muğaloğlu & Ali Yavuz Polat & Hasan Tekin, 2023. "Whether and when did bitcoin sentiment matter for investors? Before and during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-24, December.
    3. Jacques Vella Critien & Albert Gatt & Joshua Ellul, 2022. "Bitcoin price change and trend prediction through twitter sentiment and data volume," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-20, December.
    4. Ning Fu & Mingu Kang & Joongi Hong & Suntae Kim, 2024. "Enhanced Genetic-Algorithm-Driven Triple Barrier Labeling Method and Machine Learning Approach for Pair Trading Strategy in Cryptocurrency Markets," Mathematics, MDPI, vol. 12(5), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    2. Fayssal Jamhamed & Franck Martin & Fabien Rondeau & Josué Thélissaint & Stéphane Tufféry, 2024. "Regime-Specific Dynamics and Informational Efficiency in Cryptomarkets: Evidence from Gaussian Mixture Models," Economics Working Paper Archive (University of Rennes & University of Caen) 2024-13, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    3. Anamika Gupta & Gaurav Pandey & Rajan Gupta & Smaran Das & Ajmera Prakash & Kartik Garg & Shreyan Sarkar, 2024. "Machine Learning-Based Approach for Predicting the Altcoins Price Direction Change from a High-Frequency Data of Seven Years Based on Socio-Economic Factors, Bitcoin Prices, Twitter and News Sentiment," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2981-3026, November.
    4. Voraprapa Nakavachara & Roongkiat Ratanabanchuen & Kanis Saengchote & Thitiphong Amonthumniyom & Pongsathon Parinyavuttichai & Polpatt Vinaibodee, 2023. "Do People Gamble or Invest in the Cryptocurrency Market? Transactional-Level Evidence from Thailand," PIER Discussion Papers 206, Puey Ungphakorn Institute for Economic Research, revised Feb 2024.
    5. Wei Xu & Daning Hu & Karl Reiner Lang & J. Leon Zhao, 2022. "Blockchain and digital finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-4, December.
    6. Lin Li, 2023. "Investigating risk assessment in post-pandemic household cryptocurrency investments: an explainable machine learning approach," Journal of Asset Management, Palgrave Macmillan, vol. 24(4), pages 255-267, July.
    7. Kamyr Gomes Souza & Flavio Barboza & Daniel Vitor Tartari Garruti, 2024. "A Discourse Analysis of Tweets and Its Implications for Cryptocurrency Prices and Trade Volumes," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2355-2383, October.
    8. Yihang Fu & Mingyu Zhou & Luyao Zhang, 2024. "DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting," Papers 2405.00522, arXiv.org.
    9. Tomas Pečiulis & Nisar Ahmad & Angeliki N. Menegaki & Aqsa Bibi, 2024. "Forecasting of cryptocurrencies: Mapping trends, influential sources, and research themes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1880-1901, September.
    10. Wen Long & Man Guo, 2025. "Social media and capital markets: an interdisciplinary bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-32, December.
    11. Oluwadamilare Omole & David Enke, 2024. "Deep learning for Bitcoin price direction prediction: models and trading strategies empirically compared," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
    12. Yang Zhou & Chi Xie & Gang-Jin Wang & Jue Gong & You Zhu, 2025. "Forecasting cryptocurrency volatility: a novel framework based on the evolving multiscale graph neural network," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-52, December.
    13. Xian Zhuo & Felix Irresberger & Denefa Bostandzic, 2024. "How are texts analyzed in blockchain research? A systematic literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
    14. Nakavachara, Voraprapa & Ratanabanchuen, Roongkiat & Saengchote, Kanis & Amonthumniyom, Thitiphong & Parinyavuttichai, Pongsathon & Vinaibodee, Polpatt, 2024. "Do people gamble or invest in the cryptocurrency market? Transactional-level evidence from Thailand," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    15. Mercik, Aleksander & Słoński, Tomasz & Karaś, Marta, 2024. "Understanding crypto-asset exposure: An investigation of its impact on performance and stock sensitivity among listed companies," International Review of Financial Analysis, Elsevier, vol. 92(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.14897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.