IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v8y2022i1d10.1186_s40854-022-00352-7.html
   My bibliography  Save this article

Bitcoin price change and trend prediction through twitter sentiment and data volume

Author

Listed:
  • Jacques Vella Critien

    (University of Malta)

  • Albert Gatt

    (Utrecht University)

  • Joshua Ellul

    (University of Malta)

Abstract

Twitter sentiment has been shown to be useful in predicting whether Bitcoin’s price will increase or decrease. Yet the state-of-the-art is limited to predicting the price direction and not the magnitude of increase/decrease. In this paper, we seek to build on the state-of-the-art to not only predict the direction yet to also predict the magnitude of increase/decrease. We utilise not only sentiment extracted from tweets, but also the volume of tweets. We present results from experiments exploring the relation between sentiment and future price at different temporal granularities, with the goal of discovering the optimal time interval at which the sentiment expressed becomes a reliable indicator of price change. Two different neural network models are explored and evaluated, one based on recurrent nets and one based on convolutional networks. An additional model is presented to predict the magnitude of change, which is framed as a multi-class classification problem. It is shown that this model yields more reliable predictions when used alongside a price trend prediction model. The main research contribution from this paper is that we demonstrate that not only can price direction prediction be made but the magnitude in price change can be predicted with relative accuracy ( 63%).

Suggested Citation

  • Jacques Vella Critien & Albert Gatt & Joshua Ellul, 2022. "Bitcoin price change and trend prediction through twitter sentiment and data volume," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-20, December.
  • Handle: RePEc:spr:fininn:v:8:y:2022:i:1:d:10.1186_s40854-022-00352-7
    DOI: 10.1186/s40854-022-00352-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-022-00352-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-022-00352-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shubhankar Mohapatra & Nauman Ahmed & Paulo Alencar, 2020. "KryptoOracle: A Real-Time Cryptocurrency Price Prediction Platform Using Twitter Sentiments," Papers 2003.04967, arXiv.org.
    2. Suardi, Sandy & Rasel, Atiqur Rahman & Liu, Bin, 2022. "On the predictive power of tweet sentiments and attention on bitcoin," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 289-301.
    3. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    4. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    2. Nakavachara, Voraprapa & Ratanabanchuen, Roongkiat & Saengchote, Kanis & Amonthumniyom, Thitiphong & Parinyavuttichai, Pongsathon & Vinaibodee, Polpatt, 2024. "Do people gamble or invest in the cryptocurrency market? Transactional-level evidence from Thailand," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    3. Voraprapa Nakavachara & Roongkiat Ratanabanchuen & Kanis Saengchote & Thitiphong Amonthumniyom & Pongsathon Parinyavuttichai & Polpatt Vinaibodee, 2023. "Do People Gamble or Invest in the Cryptocurrency Market? Transactional-Level Evidence from Thailand," PIER Discussion Papers 206, Puey Ungphakorn Institute for Economic Research, revised Feb 2024.
    4. Mercik, Aleksander & Słoński, Tomasz & Karaś, Marta, 2024. "Understanding crypto-asset exposure: An investigation of its impact on performance and stock sensitivity among listed companies," International Review of Financial Analysis, Elsevier, vol. 92(C).
    5. Wei Xu & Daning Hu & Karl Reiner Lang & J. Leon Zhao, 2022. "Blockchain and digital finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-4, December.
    6. Oluwadamilare Omole & David Enke, 2024. "Deep learning for Bitcoin price direction prediction: models and trading strategies empirically compared," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
    7. Yihang Fu & Mingyu Zhou & Luyao Zhang, 2024. "DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting," Papers 2405.00522, arXiv.org.
    8. Tomas Pečiulis & Nisar Ahmad & Angeliki N. Menegaki & Aqsa Bibi, 2024. "Forecasting of cryptocurrencies: Mapping trends, influential sources, and research themes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1880-1901, September.
    9. Lin Li, 2023. "Investigating risk assessment in post-pandemic household cryptocurrency investments: an explainable machine learning approach," Journal of Asset Management, Palgrave Macmillan, vol. 24(4), pages 255-267, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    2. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    3. Qing Liu & Hosung Son, 2024. "Methods for aggregating investor sentiment from social media," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-22, December.
    4. Naeem, Muhammad Abubakr & Mbarki, Imen & Shahzad, Syed Jawad Hussain, 2021. "Predictive role of online investor sentiment for cryptocurrency market: Evidence from happiness and fears," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 496-514.
    5. Hadhri, Sinda, 2023. "Do cryptocurrencies feel the music?," International Review of Financial Analysis, Elsevier, vol. 89(C).
    6. Ben Osman, Myriam & Galariotis, Emilios & Guesmi, Khaled & Hamdi, Haykel & Naoui, Kamel, 2024. "Are markets sentiment driving the price bubbles in the virtual?," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 272-285.
    7. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    8. Suardi, Sandy & Rasel, Atiqur Rahman & Liu, Bin, 2022. "On the predictive power of tweet sentiments and attention on bitcoin," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 289-301.
    9. Bouteska, Ahmed & Mefteh-Wali, Salma & Dang, Trung, 2022. "Predictive power of investor sentiment for Bitcoin returns: Evidence from COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    10. David Hirshleifer & Danling Jiang, 2010. "A Financing-Based Misvaluation Factor and the Cross-Section of Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3401-3436.
    11. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    12. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    13. Kubin, Ingrid & Zörner, Thomas O. & Gardini, Laura & Commendatore, Pasquale, 2019. "A credit cycle model with market sentiments," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 159-174.
    14. Li, Xiao-Ming, 2017. "New evidence on economic policy uncertainty and equity premium," Pacific-Basin Finance Journal, Elsevier, vol. 46(PA), pages 41-56.
    15. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    16. Chue, Timothy K. & Gul, Ferdinand A. & Mian, G. Mujtaba, 2019. "Aggregate investor sentiment and stock return synchronicity," Journal of Banking & Finance, Elsevier, vol. 108(C).
    17. Hou, Yang & Meng, Jiayin, 2018. "The momentum effect in the Chinese market and its relationship with the simultaneous and the lagged investor sentiment," MPRA Paper 94838, University Library of Munich, Germany.
    18. Jascha-Alexander Koch & Michael Siering, 2019. "The recipe of successful crowdfunding campaigns," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 661-679, December.
    19. Keval Amin & Erica Harris, 2022. "The Effect of Investor Sentiment on Nonprofit Donations," Journal of Business Ethics, Springer, vol. 175(2), pages 427-450, January.
    20. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:8:y:2022:i:1:d:10.1186_s40854-022-00352-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.