IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i5d10.1007_s10614-024-10664-8.html
   My bibliography  Save this article

Decentralized Storage Cryptocurrencies: An Innovative Network-Based Model for Identifying Effective Entities and Forecasting Future Price Trends

Author

Listed:
  • Mansour Davoudi

    (Shiraz University)

  • Mina Ghavipour

    (Amirkabir University of Technology)

  • Morteza Sargolzaei-Javan

    (Amirkabir University of Technology)

  • Saber Dinparast

    (Urmia University)

Abstract

Cryptocurrencies, recognized for their transformative impact on both emerging economies and the global financial landscape, are increasingly integral to investment strategies due to their widespread adoption and significant market volatility driven by socio-political news. This study analyzes the price trends of four major cryptocurrencies in decentralized storage—Filecoin, Arweave, Storj, and Siacoin—using a novel approach that combines network analysis, textual analysis, and market analysis. By constructing a network of relevant entities, summarizing pertinent news articles, assessing sentiment with the FinBert model, and evaluating financial market data through transformer encoders, our methodology provides a comprehensive analysis of factors influencing cryptocurrency prices. The integration of these analyses enables us to predict the price trends of the examined cryptocurrencies with accuracies of 76% for Filecoin, 83% for Storj, 61% for Arweave, and 74% for Siacoin, highlighting the model's effectiveness in navigating the complexities of the cryptocurrency market.

Suggested Citation

  • Mansour Davoudi & Mina Ghavipour & Morteza Sargolzaei-Javan & Saber Dinparast, 2025. "Decentralized Storage Cryptocurrencies: An Innovative Network-Based Model for Identifying Effective Entities and Forecasting Future Price Trends," Computational Economics, Springer;Society for Computational Economics, vol. 65(5), pages 2919-2964, May.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:5:d:10.1007_s10614-024-10664-8
    DOI: 10.1007/s10614-024-10664-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10664-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10664-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    2. Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa, 2022. "The Effects of Central Bank Digital Currencies News on Financial Markets," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    3. Yu, Haixu & Liang, Chuanyu & Liu, Zhaohua & Wang, He, 2023. "News-based ESG sentiment and stock price crash risk," International Review of Financial Analysis, Elsevier, vol. 88(C).
    4. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    5. Oberlechner, Thomas, 2001. "Importance of Technical and Fundamental Analysis in the European Foreign Exchange Market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(1), pages 81-93, January.
    6. P. M. Lerman, 1980. "Fitting Segmented Regression Models by Grid Search," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 77-84, March.
    7. Jacques Vella Critien & Albert Gatt & Joshua Ellul, 2022. "Bitcoin price change and trend prediction through twitter sentiment and data volume," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-20, December.
    8. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamyr Gomes Souza & Flavio Barboza & Daniel Vitor Tartari Garruti, 2024. "A Discourse Analysis of Tweets and Its Implications for Cryptocurrency Prices and Trade Volumes," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2355-2383, October.
    2. Xian Zhuo & Felix Irresberger & Denefa Bostandzic, 2024. "How are texts analyzed in blockchain research? A systematic literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
    3. Daeyun Kang & Doojin Ryu & Robert I. Webb, 2025. "Bitcoin as a financial asset: a survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-28, December.
    4. Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
    5. Wei Xu & Daning Hu & Karl Reiner Lang & J. Leon Zhao, 2022. "Blockchain and digital finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-4, December.
    6. Osman, Myriam Ben & Urom, Christian & Guesmi, Khaled & Benkraiem, Ramzi, 2024. "Economic sentiment and the cryptocurrency market in the post-COVID-19 era," International Review of Financial Analysis, Elsevier, vol. 91(C).
    7. Husam Rjoub & Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2023. "Blockchain technology-based FinTech banking sector involvement using adaptive neuro-fuzzy-based K-nearest neighbors algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    8. Esther Calderon-Monge & Domingo Ribeiro-Soriano, 2024. "The role of digitalization in business and management: a systematic literature review," Review of Managerial Science, Springer, vol. 18(2), pages 449-491, February.
    9. Laurens Swinkels, 2023. "Empirical evidence on the ownership and liquidity of real estate tokens," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-29, December.
    10. Luyao Zhang & Tianyu Wu & Saad Lahrichi & Carlos-Gustavo Salas-Flores & Jiayi Li, 2022. "A Data Science Pipeline for Algorithmic Trading: A Comparative Study of Applications for Finance and Cryptoeconomics," Papers 2206.14932, arXiv.org.
    11. Kirimhan, Destan, 2023. "Importance of anti-money laundering regulations among prosumers for a cybersecure decentralized finance," Journal of Business Research, Elsevier, vol. 157(C).
    12. Kate Murray & Andrea Rossi & Diego Carraro & Andrea Visentin, 2023. "On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles," Forecasting, MDPI, vol. 5(1), pages 1-14, January.
    13. Jules Clement Mba, 2024. "Assessing portfolio vulnerability to systemic risk: a vine copula and APARCH-DCC approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-36, December.
    14. Wujun Lv & Tao Pang & Xiaobao Xia & Jingzhou Yan, 2023. "Dynamic portfolio choice with uncertain rare-events risk in stock and cryptocurrency markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
    15. Wolfgang Breuer & Andreas Knetsch, 2023. "Recent trends in the digitalization of finance and accounting," Journal of Business Economics, Springer, vol. 93(9), pages 1451-1461, November.
    16. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    17. Walid Mensi & Mariya Gubareva & Hee-Un Ko & Xuan Vinh Vo & Sang Hoon Kang, 2023. "Tail spillover effects between cryptocurrencies and uncertainty in the gold, oil, and stock markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
    18. De Blasis, Riccardo & Galati, Luca & Grassi, Rosanna & Rizzini, Giorgio, 2024. "Information flow in the FTX bankruptcy: A network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
    19. Riccardo Blasis & Luca Galati & Alexander Webb & Robert I. Webb, 2023. "Intelligent design: stablecoins (in)stability and collateral during market turbulence," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    20. Marcin Wk{a}torek & Marcin Kr'olczyk & Jaros{l}aw Kwapie'n & Tomasz Stanisz & Stanis{l}aw Dro.zd.z, 2024. "Approaching multifractal complexity in decentralized cryptocurrency trading," Papers 2411.05951, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:5:d:10.1007_s10614-024-10664-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.