IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i5p780-d1352114.html
   My bibliography  Save this article

Enhanced Genetic-Algorithm-Driven Triple Barrier Labeling Method and Machine Learning Approach for Pair Trading Strategy in Cryptocurrency Markets

Author

Listed:
  • Ning Fu

    (Department of Software Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea)

  • Mingu Kang

    (Department of Software Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea)

  • Joongi Hong

    (Department of Software Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea)

  • Suntae Kim

    (Department of Software Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea)

Abstract

In the dynamic world of finance, the application of Artificial Intelligence (AI) in pair trading strategies is gaining significant interest among scholars. Current AI research largely concentrates on regression analyses of prices or spreads between paired assets for formulating trading strategies. However, AI models typically exhibit less precision in regression tasks compared to classification tasks, presenting a challenge in refining the accuracy of pair trading strategies. In pursuit of high-performance labels to elevate the precision of classification models, this study advanced the Triple Barrier Labeling Method for enhanced compatibility with pair trading strategies. This refinement enables the creation of diverse label sets, each tailored to distinct barrier configurations. Focusing on achieving maximal profit or minimizing the Maximum Drawdown (MDD), Genetic Algorithms (GAs) were employed for the optimization of these labels. After optimization, the labels were classified into two distinct types: High Risk and High Profit (HRHP) and Low Risk and Low Profit (LRLP). These labels then serve as the foundation for training machine learning models, which are designed to predict future trading activities in the cryptocurrency market. Our approach, employing cryptocurrency price data from 9 November 2017 to 31 August 2022 for training and 1 September 2022 to 1 December 2023 for testing, demonstrates a substantial improvement over traditional pair trading strategies. In particular, models trained with HRHP signals realized a 51.42% surge in profitability, while those trained with LRLP signals significantly mitigated risk, marked by a 73.24% reduction in the MDD. This innovative method marks a significant advancement in cryptocurrency pair trading strategies, offering traders a powerful and refined tool for optimizing their trading decisions.

Suggested Citation

  • Ning Fu & Mingu Kang & Joongi Hong & Suntae Kim, 2024. "Enhanced Genetic-Algorithm-Driven Triple Barrier Labeling Method and Machine Learning Approach for Pair Trading Strategy in Cryptocurrency Markets," Mathematics, MDPI, vol. 12(5), pages 1-21, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:780-:d:1352114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/5/780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/5/780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    2. Paolo Giudici, 2001. "Bayesian data mining, with application to benchmarking and credit scoring," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(1), pages 69-81, January.
    3. Tim Leung & Hung Nguyen, 2019. "Constructing cointegrated cryptocurrency portfolios for statistical arbitrage," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 36(4), pages 581-599, September.
    4. Murat, Atilim & Tokat, Ekin, 2009. "Forecasting oil price movements with crack spread futures," Energy Economics, Elsevier, vol. 31(1), pages 85-90, January.
    5. Christopher Krauss, 2017. "Statistical Arbitrage Pairs Trading Strategies: Review And Outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 31(2), pages 513-545, April.
    6. Mare, Davide Salvatore & Moreira, Fernando & Rossi, Roberto, 2017. "Nonstationary Z-Score measures," European Journal of Operational Research, Elsevier, vol. 260(1), pages 348-358.
    7. Aiman Hairudin & Imtiaz Mohammad Sifat & Azhar Mohamad & Yusniliyana Yusof, 2022. "Cryptocurrencies: A survey on acceptance, governance and market dynamics," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4633-4659, October.
    8. repec:eme:sef000:sef-08-2018-0264 is not listed on IDEAS
    9. Timofei Bogomolov, 2013. "Pairs trading based on statistical variability of the spread process," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1411-1430, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid Moradi-Kamali & Mohammad-Hossein Rajabi-Ghozlou & Mahdi Ghazavi & Ali Soltani & Amirreza Sattarzadeh & Reza Entezari-Maleki, 2025. "Market-Derived Financial Sentiment Analysis: Context-Aware Language Models for Crypto Forecasting," Papers 2502.14897, arXiv.org, revised Mar 2025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masood Tadi & Jiří Witzany, 2025. "Copula-based trading of cointegrated cryptocurrency Pairs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-32, December.
    2. Mahmut Bağcı & Pınar Kaya Soylu, 2024. "Optimal portfolio selection with volatility information for a high frequency rebalancing algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-28, December.
    3. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    4. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    5. Vladim'ir Hol'y & Petra Tomanov'a, 2018. "Estimation of Ornstein-Uhlenbeck Process Using Ultra-High-Frequency Data with Application to Intraday Pairs Trading Strategy," Papers 1811.09312, arXiv.org, revised Jul 2022.
    6. Ahmed, Mohamed Shaker & El-Masry, Ahmed A. & Al-Maghyereh, Aktham I. & Kumar, Satish, 2024. "Cryptocurrency volatility: A review, synthesis, and research agenda," Research in International Business and Finance, Elsevier, vol. 71(C).
    7. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.
    8. Johannes Stübinger & Sylvia Endres, 2018. "Pairs trading with a mean-reverting jump–diffusion model on high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1735-1751, October.
    9. Johannes St binger & Jens Bredthauer, 2017. "Statistical Arbitrage Pairs Trading with High-frequency Data," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 650-662.
    10. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
    11. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    12. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    13. de Albuquerquemello, Vinícius Phillipe & de Medeiros, Rennan Kertlly & da Nóbrega Besarria, Cássio & Maia, Sinézio Fernandes, 2018. "Forecasting crude oil price: Does exist an optimal econometric model?," Energy, Elsevier, vol. 155(C), pages 578-591.
    14. Eugene Msizi Buthelezi, 2024. "Navigating Global Uncertainty: Examining the Effect of Geopolitical Risks on Cryptocurrency Prices and Volatility in a Markov-Switching Vector Autoregressive Model," International Economic Journal, Taylor & Francis Journals, vol. 38(4), pages 564-590, October.
    15. Ventosa-Santaularària, Daniel & Gómez, Manuel, 2006. "Inflation and Breaks: the validity of the Dickey-Fuller test," MPRA Paper 58773, University Library of Munich, Germany.
    16. Christoph Rothe & Philipp Sibbertsen, 2006. "Phillips-Perron-type unit root tests in the nonlinear ESTAR framework," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(3), pages 439-456, September.
    17. Chao Deng & Liang Ma & Taishan Zeng, 2021. "Crude Oil Price Forecast Based on Deep Transfer Learning: Shanghai Crude Oil as an Example," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
    18. Bo Liu & Lo-Bin Chang & Hélyette Geman, 2017. "Intraday pairs trading strategies on high frequency data: the case of oil companies," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 87-100, January.
    19. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    20. Christophe Kamps, 2006. "New Estimates of Government Net Capital Stocks for 22 OECD Countries, 1960-2001," IMF Staff Papers, Palgrave Macmillan, vol. 53(1), pages 1-6.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:780-:d:1352114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.