IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v17y2017i1p87-100.html
   My bibliography  Save this article

Intraday pairs trading strategies on high frequency data: the case of oil companies

Author

Listed:
  • Bo Liu
  • Lo-Bin Chang
  • Hélyette Geman

Abstract

This paper introduces novel ‘doubly mean-reverting’ processes based on conditional modelling of model spreads between pairs of stocks. Intraday trading strategies using high frequency data are proposed based on the model. This model framework and the strategies are designed to capture ‘local’ market inefficiencies that are elusive for traditional pairs trading strategies with daily data. Results from real data back-testing for two periods show remarkable returns, even accounting for transaction costs, with annualized Sharpe ratios of 3.9 and 7.2 over the periods June 2013–April 2015 and 2008, respectively. By choosing the particular sector of oil companies, we also confirm the observation that the commodity price is the main driver of the share prices of commodity-producing companies at times of spikes in the related commodity market.

Suggested Citation

  • Bo Liu & Lo-Bin Chang & Hélyette Geman, 2017. "Intraday pairs trading strategies on high frequency data: the case of oil companies," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 87-100, January.
  • Handle: RePEc:taf:quantf:v:17:y:2017:i:1:p:87-100
    DOI: 10.1080/14697688.2016.1184304
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2016.1184304
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2016.1184304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Lo-Bin & Geman, Stuart, 2013. "Empirical scaling laws and the aggregation of non-stationary data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5046-5052.
    2. Mark Cummins & Andrea Bucca, 2012. "Quantitative spread trading on crude oil and refined products markets," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1857-1875, December.
    3. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    4. repec:bla:jfinan:v:53:y:1998:i:3:p:1015-1052 is not listed on IDEAS
    5. Zhengqin Zeng & Chi-Guhn Lee, 2014. "Pairs trading: optimal thresholds and profitability," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1881-1893, November.
    6. Lo, Andrew W & MacKinlay, A Craig, 1990. "Data-Snooping Biases in Tests of Financial Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 431-467.
    7. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    8. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    9. Timofei Bogomolov, 2013. "Pairs trading based on statistical variability of the spread process," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1411-1430, September.
    10. Geman, Helyette & Vergel Eleuterio, Pedro, 2013. "Investing in fertilizer–mining companies in times of food scarcity," Resources Policy, Elsevier, vol. 38(4), pages 470-480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Endres, Sylvia & Stübinger, Johannes, 2017. "Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes," FAU Discussion Papers in Economics 17/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    2. Muhammad Asif Khan & Masood Ahmed & József Popp & Judit Oláh, 2020. "US Policy Uncertainty and Stock Market Nexus Revisited through Dynamic ARDL Simulation and Threshold Modelling," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    3. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    4. Xiang, Yun & He, Jiaxuan, 2022. "Pairs trading and asset pricing," Pacific-Basin Finance Journal, Elsevier, vol. 72(C).
    5. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Alexander Lipton & Marcos Lopez de Prado, 2020. "A closed-form solution for optimal mean-reverting trading strategies," Papers 2003.10502, arXiv.org.
    7. Tihana Škrinjarić, 2021. "Profiting on the Stock Market in Pandemic Times: Study of COVID-19 Effects on CESEE Stock Markets," Mathematics, MDPI, vol. 9(17), pages 1-20, August.
    8. Syed Mujahid Hussain & Sergey Osmekhin & Frédéric Délèze, 2021. "Short-term market efficiency indicator based on the waiting-time distribution," Review of Managerial Science, Springer, vol. 15(6), pages 1561-1572, August.
    9. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2020. "High frequency momentum trading with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 52(C).
    10. Johannes Stübinger & Lucas Schneider, 2019. "Statistical Arbitrage with Mean-Reverting Overnight Price Gaps on High-Frequency Data of the S&P 500," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    11. Stübinger, Johannes & Walter, Dominik & Knoll, Julian, 2017. "Financial market predictions with Factorization Machines: Trading the opening hour based on overnight social media data," FAU Discussion Papers in Economics 19/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    12. Yen-Sheng Lee, 2022. "Representative Bias and Pairs Trade: Evidence From S&P 500 and Russell 2000 Indexes," SAGE Open, , vol. 12(3), pages 21582440221, August.
    13. Johannes St binger & Jens Bredthauer, 2017. "Statistical Arbitrage Pairs Trading with High-frequency Data," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 650-662.
    14. Tian-Shyr Dai & Yi-Jen Luo & Hao-Han Chang & Chu-Lan Kao & Kuan-Lun Wang & Liang-Chih Liu, 2024. "Asymptotic analyses for trend-stationary pairs trading strategy in high-frequency trading," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1391-1411, November.
    15. Vladimír Holý & Michal Černý, 2022. "Bertram’s pairs trading strategy with bounded risk," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 667-682, June.
    16. Endres, Sylvia & Stübinger, Johannes, 2018. "A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns," FAU Discussion Papers in Economics 07/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Johannes Stübinger & Sylvia Endres, 2018. "Pairs trading with a mean-reverting jump–diffusion model on high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1735-1751, October.
    18. Thomas Günter Fischer & Christopher Krauss & Alexander Deinert, 2019. "Statistical Arbitrage in Cryptocurrency Markets," JRFM, MDPI, vol. 12(1), pages 1-15, February.
    19. Karen Balladares & José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Angel Sánchez-Granero, 2021. "Statistical Arbitrage in Emerging Markets: A Global Test of Efficiency," Mathematics, MDPI, vol. 9(2), pages 1-20, January.
    20. Lucas Schneider & Johannes Stübinger, 2020. "Dispersion Trading Based on the Explanatory Power of S&P 500 Stock Returns," Mathematics, MDPI, vol. 8(9), pages 1-22, September.
    21. Vladim'ir Hol'y & Petra Tomanov'a, 2018. "Estimation of Ornstein-Uhlenbeck Process Using Ultra-High-Frequency Data with Application to Intraday Pairs Trading Strategy," Papers 1811.09312, arXiv.org, revised Jul 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Endres, Sylvia & Stübinger, Johannes, 2017. "Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes," FAU Discussion Papers in Economics 17/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    2. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Ahmet Göncü & Erdinc Akyildirim, 2016. "A stochastic model for commodity pairs trading," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1843-1857, December.
    4. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    5. Johannes Stübinger & Sylvia Endres, 2018. "Pairs trading with a mean-reverting jump–diffusion model on high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1735-1751, October.
    6. Vladim'ir Hol'y & Petra Tomanov'a, 2018. "Estimation of Ornstein-Uhlenbeck Process Using Ultra-High-Frequency Data with Application to Intraday Pairs Trading Strategy," Papers 1811.09312, arXiv.org, revised Jul 2022.
    7. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    8. Endres, Sylvia & Stübinger, Johannes, 2018. "A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns," FAU Discussion Papers in Economics 07/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    9. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Alexander Lipton & Marcos Lopez de Prado, 2020. "A closed-form solution for optimal mean-reverting trading strategies," Papers 2003.10502, arXiv.org.
    11. Ahmet Göncü & Erdinç Akyıldırım, 2016. "Statistical Arbitrage with Pairs Trading," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 307-319, June.
    12. Johannes St binger & Jens Bredthauer, 2017. "Statistical Arbitrage Pairs Trading with High-frequency Data," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 650-662.
    13. Ahmet G�nc�, 2015. "Statistical arbitrage in the Black-Scholes framework," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1489-1499, September.
    14. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    15. Erdinc Akyildirim & Ahmet Goncu & Alper Hekimoglu & Duc Khuong Nguyen & Ahmet Sensoy, 2023. "Statistical arbitrage: factor investing approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1295-1331, December.
    16. Law, K.F. & Li, W.K. & Yu, Philip L.H., 2018. "A single-stage approach for cointegration-based pairs trading," Finance Research Letters, Elsevier, vol. 26(C), pages 177-184.
    17. Xiang, Yun & He, Jiaxuan, 2022. "Pairs trading and asset pricing," Pacific-Basin Finance Journal, Elsevier, vol. 72(C).
    18. Viviana Fanelli & Claudio Fontana & Francesco Rotondi, 2023. "A hidden Markov model for statistical arbitrage in international crude oil futures markets," Papers 2309.00875, arXiv.org, revised Sep 2024.
    19. Stübinger, Johannes, 2018. "Statistical arbitrage with optimal causal paths on high-frequencydata of the S&P 500," FAU Discussion Papers in Economics 01/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    20. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:17:y:2017:i:1:p:87-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.