IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.06510.html
   My bibliography  Save this paper

Optimal Exit Time for Liquidity Providers in Automated Market Makers

Author

Listed:
  • Philippe Bergault
  • S'ebastien Bieber
  • Leandro S'anchez-Betancourt

Abstract

We study the problem of optimal liquidity withdrawal for a representative liquidity provider (LP) in an automated market maker (AMM). LPs earn fees from trading activity but are exposed to impermanent loss (IL) due to price fluctuations. While existing work has focused on static provision and exogenous exit strategies, we characterise the optimal exit time as the solution to a stochastic control problem with an endogenous stopping time. Mathematically, the LP's value function is shown to satisfy a Hamilton-Jacobi-Bellman quasi-variational inequality, for which we establish uniqueness in the viscosity sense. To solve the problem numerically, we develop two complementary approaches: a Euler scheme based on operator splitting and a Longstaff-Schwartz regression method. Calibrated simulations highlight how the LP's optimal exit strategy depends on the oracle price volatility, fee levels, and the behaviour of arbitrageurs and noise traders. Our results show that while arbitrage generates both fees and IL, the LP's optimal decision balances these opposing effects based on the pool state variables and price misalignments. This work contributes to a deeper understanding of dynamic liquidity provision in AMMs and provides insights into the sustainability of passive LP strategies under different market regimes.

Suggested Citation

  • Philippe Bergault & S'ebastien Bieber & Leandro S'anchez-Betancourt, 2025. "Optimal Exit Time for Liquidity Providers in Automated Market Makers," Papers 2509.06510, arXiv.org.
  • Handle: RePEc:arx:papers:2509.06510
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.06510
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.06510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.