IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.02869.html
   My bibliography  Save this paper

Optimal Dynamic Fees in Automated Market Makers

Author

Listed:
  • Leonardo Baggiani
  • Martin Herdegen
  • Leandro S'anchez-Betancourt

Abstract

Automated Market Makers (AMMs) are emerging as a popular decentralised trading platform. In this work, we determine the optimal dynamic fees in a constant function market maker. We find approximate closed-form solutions to the control problem and study the optimal fee structure. We find that there are two distinct fee regimes: one in which the AMM imposes higher fees to deter arbitrageurs, and another where fees are lowered to increase volatility and attract noise traders. Our results also show that dynamic fees that are linear in inventory and are sensitive to changes in the external price are a good approximation of the optimal fee structure and thus constitute suitable candidates when designing fees for AMMs.

Suggested Citation

  • Leonardo Baggiani & Martin Herdegen & Leandro S'anchez-Betancourt, 2025. "Optimal Dynamic Fees in Automated Market Makers," Papers 2506.02869, arXiv.org.
  • Handle: RePEc:arx:papers:2506.02869
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.02869
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    2. Álvaro Cartea & Fayçal Drissi & Marcello Monga, 2023. "Predictable Losses of Liquidity Provision in Constant Function Markets and Concentrated Liquidity Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(2), pages 69-93, March.
    3. Emilio Barucci & Adrien Mathieu & Leandro S'anchez-Betancourt, 2025. "Market Making with Fads, Informed, and Uninformed Traders," Papers 2501.03658, arXiv.org, revised Feb 2025.
    4. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Guéant, 2024. "Automated market makers: mean-variance analysis of LPs payoffs and design of pricing functions," Digital Finance, Springer, vol. 6(2), pages 225-247, June.
    2. Emilio Barucci & Adrien Mathieu & Leandro S'anchez-Betancourt, 2025. "Market Making with Fads, Informed, and Uninformed Traders," Papers 2501.03658, arXiv.org, revised Feb 2025.
    3. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Price-Aware Automated Market Makers: Models Beyond Brownian Prices and Static Liquidity," Papers 2405.03496, arXiv.org, revised May 2024.
    4. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    5. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    6. Roza Galeeva & Ehud Ronn, 2022. "Oil futures volatility smiles in 2020: Why the bachelier smile is flatter," Review of Derivatives Research, Springer, vol. 25(2), pages 173-187, July.
    7. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    8. Kanamura, Takashi & Bunn, Derek W., 2022. "Market making and electricity price formation in Japan," Energy Economics, Elsevier, vol. 107(C).
    9. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    10. Leo Ardon & Nelson Vadori & Thomas Spooner & Mengda Xu & Jared Vann & Sumitra Ganesh, 2021. "Towards a fully RL-based Market Simulator," Papers 2110.06829, arXiv.org, revised Nov 2021.
    11. Yang, Qing-Qing & Ching, Wai-Ki & Gu, Jia-Wen & Siu, Tak-Kuen, 2018. "Market-making strategy with asymmetric information and regime-switching," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 408-433.
    12. Marina Di Giacinto & Claudio Tebaldi & Tai-Ho Wang, 2021. "Optimal order execution under price impact: A hybrid model," Papers 2112.02228, arXiv.org, revised Aug 2022.
    13. Philippe Bergault & Olivier Gu'eant, 2023. "Liquidity Dynamics in RFQ Markets and Impact on Pricing," Papers 2309.04216, arXiv.org, revised Jun 2024.
    14. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    15. Ryan Donnelly & Zi Li, 2022. "Dynamic Inventory Management with Mean-Field Competition," Papers 2210.17208, arXiv.org, revised Apr 2025.
    16. Christoph Kuhn & Johannes Muhle-Karbe, 2013. "Optimal Liquidity Provision," Papers 1309.5235, arXiv.org, revised Feb 2015.
    17. Jack Sarkissian, 2013. "Coupled mode theory of stock price formation," Papers 1312.4622, arXiv.org.
    18. Sofiene El Aoud & Frédéric Abergel, 2015. "A stochastic control approach for options market making," Post-Print hal-01061852, HAL.
    19. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Jun 2024.
    20. Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.02869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.