IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v336y2024i1d10.1007_s10479-022-05082-8.html
   My bibliography  Save this article

Optimal order execution under price impact: a hybrid model

Author

Listed:
  • Marina Giacinto

    (Università degli studi di Cassino e del Lazio Meridionale)

  • Claudio Tebaldi

    (Università Commerciale Luigi Bocconi and IGIER and Baffi-Carefin)

  • Tai-Ho Wang

    (Baruch College, The City University of New York
    China Center for Economics Research (CCER), Peking University)

Abstract

In this paper we explore optimal liquidation in a market populated by a number of heterogeneous market makers that have limited inventory-carrying and risk-bearing capacity. We derive a reduced form model for the dynamics of their aggregated inventory considering a proper scaling limit. The resulting price impact profile is shown to depend on the characteristics and relative importance of their inventories. The model is flexible enough to reproduce the empirically documented power law behavior of the price impact function. For any choice of the market makers characteristics, optimal execution within this modeling approach can be recast as a linear-quadratic stochastic control problem. The value function and the associated optimal trading rate can be obtained semi-explicitly subject to solving a differential matrix Riccati equation. Numerical simulations are conducted to illustrate the performance of the resulting optimal liquidation strategy in relation to standard benchmarks. Remarkably, they show that the increase in performance is determined by a substantial reduction of higher order moment risk.

Suggested Citation

  • Marina Giacinto & Claudio Tebaldi & Tai-Ho Wang, 2024. "Optimal order execution under price impact: a hybrid model," Annals of Operations Research, Springer, vol. 336(1), pages 605-636, May.
  • Handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-022-05082-8
    DOI: 10.1007/s10479-022-05082-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-05082-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-05082-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. JosE Da Fonseca & Martino Grasselli & Claudio Tebaldi, 2008. "A multifactor volatility Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 591-604.
    2. Rene Carmona & Laura Leal, 2021. "Optimal Execution with Quadratic Variation Inventories," Papers 2104.14615, arXiv.org.
    3. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    4. Paulwin Graewe & Ulrich Horst, 2016. "Optimal Trade Execution with Instantaneous Price Impact and Stochastic Resilience," Papers 1611.03435, arXiv.org, revised Jul 2017.
    5. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    6. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    7. Martino Grasselli & Claudio Tebaldi, 2008. "Solvable Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 135-153, January.
    8. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    9. Xue Cheng & Marina Di Giacinto & Tai-Ho Wang, 2017. "Optimal execution with uncertain order fills in Almgren–Chriss framework," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 55-69, January.
    10. Xue Cheng & Marina Di Giacinto & Tai-Ho Wang, 2019. "Optimal execution with dynamic risk adjustment," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1662-1677, October.
    11. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    12. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    13. Xue Cheng & Marina Di Giacinto & Tai-Ho Wang, 2019. "Optimal execution with dynamic risk adjustment," Papers 1901.00617, arXiv.org, revised Jul 2019.
    14. René Carmona & Kevin Webster, 2019. "The self-financing equation in limit order book markets," Finance and Stochastics, Springer, vol. 23(3), pages 729-759, July.
    15. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2003. "Fluctuations and response in financial markets: the subtle nature of `random' price changes," Papers cond-mat/0307332, arXiv.org, revised Aug 2003.
    16. Amihud, Yakov & Mendelson, Haim, 1980. "Dealership market : Market-making with inventory," Journal of Financial Economics, Elsevier, vol. 8(1), pages 31-53, March.
    17. Garman, Mark B., 1976. "Market microstructure," Journal of Financial Economics, Elsevier, vol. 3(3), pages 257-275, June.
    18. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    19. Fulvio Ortu & Federico Severino & Andrea Tamoni & Claudio Tebaldi, 2020. "A persistence‐based Wold‐type decomposition for stationary time series," Quantitative Economics, Econometric Society, vol. 11(1), pages 203-230, January.
    20. Eyal Neuman & Moritz Vo{ss}, 2020. "Optimal Signal-Adaptive Trading with Temporary and Transient Price Impact," Papers 2002.09549, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marina Di Giacinto & Claudio Tebaldi & Tai-Ho Wang, 2021. "Optimal order execution under price impact: A hybrid model," Papers 2112.02228, arXiv.org, revised Aug 2022.
    2. Christoph Kuhn & Johannes Muhle-Karbe, 2013. "Optimal Liquidity Provision," Papers 1309.5235, arXiv.org, revised Feb 2015.
    3. Baron Law & Frederi Viens, 2019. "Market Making under a Weakly Consistent Limit Order Book Model," Papers 1903.07222, arXiv.org, revised Jan 2020.
    4. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    5. Kühn, Christoph & Muhle-Karbe, Johannes, 2015. "Optimal liquidity provision," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2493-2515.
    6. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    7. M. Alessandra Crisafi & Andrea Macrina, 2015. "Dark-Pool Perspective of Optimal Market Making," Papers 1502.02863, arXiv.org.
    8. Meng Wang & Tai-Ho Wang, 2023. "Relative entropy-regularized robust optimal order execution," Papers 2311.06476, arXiv.org, revised Sep 2024.
    9. Nelson Vadori & Leo Ardon & Sumitra Ganesh & Thomas Spooner & Selim Amrouni & Jared Vann & Mengda Xu & Zeyu Zheng & Tucker Balch & Manuela Veloso, 2022. "Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations," Papers 2210.07184, arXiv.org, revised Aug 2023.
    10. Qixuan Luo & Shijia Song & Handong Li, 2023. "Research on the Effects of Liquidation Strategies in the Multi-asset Artificial Market," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1721-1750, December.
    11. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Yuheng Zheng & Zihan Ding, 2024. "Reinforcement Learning in High-frequency Market Making," Papers 2407.21025, arXiv.org, revised Aug 2024.
    13. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    14. Iraklis Kollias & John Leventides & Vassilios G. Papavassiliou, 2024. "On the solution of games with arbitrary payoffs: An application to an over‐the‐counter financial market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1877-1895, April.
    15. Black, Jeffrey R. & Stock, Duane & Yadav, Pradeep K., 2016. "The pricing of different dimensions of liquidity: Evidence from government guaranteed bonds," Journal of Banking & Finance, Elsevier, vol. 71(C), pages 119-132.
    16. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Guéant, 2024. "Automated market makers: mean-variance analysis of LPs payoffs and design of pricing functions," Digital Finance, Springer, vol. 6(2), pages 225-247, June.
    17. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    18. Luitgard Veraart, 2010. "Optimal Market Making in the Foreign Exchange Market," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 359-372.
    19. Goldstein, Michael A. & Namin, Elmira Shekari, 2023. "Corporate bond liquidity and yield spreads: A review," Research in International Business and Finance, Elsevier, vol. 65(C).
    20. Siu, Chi Chung & Guo, Ivan & Zhu, Song-Ping & Elliott, Robert J., 2019. "Optimal execution with regime-switching market resilience," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 17-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-022-05082-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.