IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-02987894.html
   My bibliography  Save this paper

Size matters for OTC market makers: general results and dimensionality reduction techniques

Author

Listed:
  • Philippe Bergault

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Olivier Guéant

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

In most OTC markets, a small number of market makers provide liquidity to other market participants. More precisely, for a list of assets, they set prices at which they agree to buy and sell. Market makers face therefore an interesting optimization problem: they need to choose bid and ask prices for making money while mitigating the risk associated with holding inventory in a volatile market. Many market making models have been proposed in the academic literature, most of them dealing with single-asset market making whereas market makers are usually in charge of a long list of assets. The rare models tackling multi-asset market making suffer however from the curse of dimensionality when it comes to the numerical approximation of the optimal quotes. The goal of this paper is to propose a dimensionality reduction technique to address multi-asset market making by using a factor model. Moreover, we generalize existing market making models by the addition of an important feature: the existence of different transaction sizes and the possibility for the market makers in OTC markets to answer different prices to requests with different sizes.

Suggested Citation

  • Philippe Bergault & Olivier Guéant, 2020. "Size matters for OTC market makers: general results and dimensionality reduction techniques," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02987894, HAL.
  • Handle: RePEc:hal:cesptp:hal-02987894
    Note: View the original document on HAL open archive server: https://hal.science/hal-02987894
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02987894/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabien Guilbaud & Huyên Pham, 2013. "Optimal high-frequency trading with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 79-94, January.
    2. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    3. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    4. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    5. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    6. Sanford J. Grossman & Merton H. Miller, 1988. "Liquidity and Market Structure," NBER Working Papers 2641, National Bureau of Economic Research, Inc.
    7. Bastien Baldacci & Philippe Bergault & Olivier Gu'eant, 2019. "Algorithmic market making for options," Papers 1907.12433, arXiv.org, revised Jul 2020.
    8. Sasha Stoikov & Mehmet Sağlam, 2009. "Option market making under inventory risk," Review of Derivatives Research, Springer, vol. 12(1), pages 55-79, April.
    9. Olivier Gu'eant & Iuliia Manziuk, 2019. "Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality," Papers 1910.13205, arXiv.org.
    10. Olivier Guéant & Iuliia Manziuk, 2019. "Deep Reinforcement Learning for Market Making in Corporate Bonds: Beating the Curse of Dimensionality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(5), pages 387-452, September.
    11. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    12. repec:bla:jfinan:v:43:y:1988:i:3:p:617-37 is not listed on IDEAS
    13. Fabien Guilbaud & Huyên Pham, 2015. "Optimal High-Frequency Trading In A Pro Rata Microstructure With Predictive Information," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 545-575, July.
    14. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Algorithmic market making in dealer markets with hedging and market impact," Papers 2106.06974, arXiv.org, revised Dec 2022.
    2. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Price-Aware Automated Market Makers: Models Beyond Brownian Prices and Static Liquidity," Papers 2405.03496, arXiv.org, revised May 2024.
    3. Bastien Baldacci & Philippe Bergault, 2021. "Optimal incentives in a limit order book: a SPDE control approach," Papers 2112.00375, arXiv.org, revised Oct 2022.
    4. Bastien Baldacci & Philippe Bergault & Dylan Possamai, 2022. "A mean-field game of market-making against strategic traders," Papers 2203.13053, arXiv.org.
    5. Zhou Fang & Haiqing Xu, 2023. "Over-the-Counter Market Making via Reinforcement Learning," Papers 2307.01816, arXiv.org.
    6. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Market making by an FX dealer: tiers, pricing ladders and hedging rates for optimal risk control," Papers 2112.02269, arXiv.org, revised Jun 2023.
    7. Alexander Barzykin & Philippe Bergault & Olivier Guéant, 2023. "Algorithmic market making in dealer markets with hedging and market impact," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 41-79, January.
    8. Olivier Guéant, 2022. "Computational methods for market making algorithms," Post-Print hal-04590381, HAL.
    9. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    10. Jonathan Ch'avez-Casillas & Jos'e E. Figueroa-L'opez & Chuyi Yu & Yi Zhang, 2024. "Adaptive Optimal Market Making Strategies with Inventory Liquidation Cos," Papers 2405.11444, arXiv.org.
    11. Philippe Bergault & Olivier Gu'eant, 2023. "Liquidity Dynamics in RFQ Markets and Impact on Pricing," Papers 2309.04216, arXiv.org, revised Jun 2024.
    12. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    13. Mathieu Rosenbaum & Jianfei Zhang, 2022. "Multi-asset market making under the quadratic rough Heston," Papers 2212.10164, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Bergault & Olivier Gu'eant, 2019. "Size matters for OTC market makers: general results and dimensionality reduction techniques," Papers 1907.01225, arXiv.org, revised Sep 2022.
    2. Bastien Baldacci & Philippe Bergault & Olivier Gu'eant, 2019. "Algorithmic market making for options," Papers 1907.12433, arXiv.org, revised Jul 2020.
    3. Philippe Bergault & David Evangelista & Olivier Gu'eant & Douglas Vieira, 2018. "Closed-form approximations in multi-asset market making," Papers 1810.04383, arXiv.org, revised Sep 2022.
    4. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Algorithmic market making in dealer markets with hedging and market impact," Papers 2106.06974, arXiv.org, revised Dec 2022.
    5. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    6. Burcu Aydoğan & Ömür Uğur & Ümit Aksoy, 2023. "Optimal Limit Order Book Trading Strategies with Stochastic Volatility in the Underlying Asset," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 289-324, June.
    7. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    8. Mathieu Rosenbaum & Jianfei Zhang, 2022. "Multi-asset market making under the quadratic rough Heston," Papers 2212.10164, arXiv.org.
    9. Alexander Barzykin & Philippe Bergault & Olivier Guéant, 2023. "Algorithmic market making in dealer markets with hedging and market impact," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 41-79, January.
    10. Bastien Baldacci & Philippe Bergault & Dylan Possamai, 2022. "A mean-field game of market-making against strategic traders," Papers 2203.13053, arXiv.org.
    11. Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
    12. Olivier Guéant, 2022. "Computational methods for market making algorithms," Post-Print hal-04590381, HAL.
    13. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    14. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    15. Bastien Baldacci & Jerome Benveniste & Gordon Ritter, 2020. "Optimal trading without optimal control," Papers 2012.12945, arXiv.org.
    16. Bastien Baldacci & Iuliia Manziuk, 2020. "Adaptive trading strategies across liquidity pools," Papers 2008.07807, arXiv.org.
    17. Álvaro Cartea & Sebastian Jaimungal & Damir Kinzebulatov, 2016. "Algorithmic Trading With Learning," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-30, June.
    18. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    19. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Price-Aware Automated Market Makers: Models Beyond Brownian Prices and Static Liquidity," Papers 2405.03496, arXiv.org, revised May 2024.
    20. Olivier Gu'eant & Jiang Pu, 2018. "Mid-price estimation for European corporate bonds: a particle filtering approach," Papers 1810.05884, arXiv.org, revised Mar 2019.

    More about this item

    Keywords

    Market making; Stochastic optimal control; Curse of dimensionality; Integro-dierential equations; Risk factor models;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-02987894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.