IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.16588.html
   My bibliography  Save this paper

Robust Market Making: To Quote, or not To Quote

Author

Listed:
  • Ziyi Wang
  • Carmine Ventre
  • Maria Polukarov

Abstract

Market making is a popular trading strategy, which aims to generate profit from the spread between the quotes posted at either side of the market. It has been shown that training market makers (MMs) with adversarial reinforcement learning allows to overcome the risks due to changing market conditions and to lead to robust performances. Prior work assumes, however, that MMs keep quoting throughout the trading process, but in practice this is not required, even for ``registered'' MMs (that only need to satisfy quoting ratios defined by the market rules). In this paper, we build on this line of work and enrich the strategy space of the MM by allowing to occasionally not quote or provide single-sided quotes. Towards this end, in addition to the MM agents that provide continuous bid-ask quotes, we have designed two new agents with increasingly richer action spaces. The first has the option to provide bid-ask quotes or refuse to quote. The second has the option to provide bid-ask quotes, refuse to quote, or only provide single-sided ask or bid quotes. We employ a model-driven approach to empirically compare the performance of the continuously quoting MM with the two agents above in various types of adversarial environments. We demonstrate how occasional refusal to provide bid-ask quotes improves returns and/or Sharpe ratios. The quoting ratios of well-trained MMs can basically meet any market requirements, reaching up to 99.9$\%$ in some cases.

Suggested Citation

  • Ziyi Wang & Carmine Ventre & Maria Polukarov, 2025. "Robust Market Making: To Quote, or not To Quote," Papers 2508.16588, arXiv.org.
  • Handle: RePEc:arx:papers:2508.16588
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.16588
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Guéant & Iuliia Manziuk, 2019. "Deep Reinforcement Learning for Market Making in Corporate Bonds: Beating the Curse of Dimensionality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(5), pages 387-452, September.
    2. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    3. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    4. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 251-256.
    5. Olivier Guéant, 2017. "Optimal market making," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(2), pages 112-154, March.
    6. Hugh Luckock, 2003. "A steady-state model of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(5), pages 385-404.
    7. Eric Smith & J Doyne Farmer & Laszlo Gillemot & Supriya Krishnamurthy, 2003. "Statistical theory of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 481-514.
    8. Olivier Gu'eant & Iuliia Manziuk, 2019. "Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality," Papers 1910.13205, arXiv.org.
    9. Fabien Guilbaud & Huyên Pham, 2013. "Optimal high-frequency trading with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 79-94, January.
    10. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    11. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    12. Nicholas T. Chan and Christian Shelton, 2001. "An Adaptive Electronic Market-Maker," Computing in Economics and Finance 2001 146, Society for Computational Economics.
    13. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    14. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    15. Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
    16. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    2. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    3. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Guéant, 2024. "Automated market makers: mean-variance analysis of LPs payoffs and design of pricing functions," Digital Finance, Springer, vol. 6(2), pages 225-247, June.
    4. Ziyi Wang & Carmine Ventre & Maria Polukarov, 2025. "ARL-Based Multi-Action Market Making with Hawkes Processes and Variable Volatility," Papers 2508.16589, arXiv.org.
    5. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
    6. Nelson Vadori & Leo Ardon & Sumitra Ganesh & Thomas Spooner & Selim Amrouni & Jared Vann & Mengda Xu & Zeyu Zheng & Tucker Balch & Manuela Veloso, 2022. "Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations," Papers 2210.07184, arXiv.org, revised Aug 2023.
    7. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    8. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    9. Jiafa He & Cong Zheng & Can Yang, 2023. "Integrating Tick-level Data and Periodical Signal for High-frequency Market Making," Papers 2306.17179, arXiv.org.
    10. Bastien Baldacci & Philippe Bergault & Olivier Gu'eant, 2019. "Algorithmic market making for options," Papers 1907.12433, arXiv.org, revised Jul 2020.
    11. Philippe Bergault & Olivier Gu'eant, 2019. "Size matters for OTC market makers: general results and dimensionality reduction techniques," Papers 1907.01225, arXiv.org, revised Sep 2022.
    12. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Algorithmic market making in dealer markets with hedging and market impact," Papers 2106.06974, arXiv.org, revised Dec 2022.
    13. Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.
    14. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Automated Market Making: the case of Pegged Assets," Papers 2411.08145, arXiv.org.
    15. Bastien Baldacci & Jerome Benveniste & Gordon Ritter, 2020. "Optimal trading without optimal control," Papers 2012.12945, arXiv.org.
    16. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    17. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Price-Aware Automated Market Makers: Models Beyond Brownian Prices and Static Liquidity," Papers 2405.03496, arXiv.org, revised May 2024.
    18. Mathieu Rosenbaum & Jianfei Zhang, 2022. "Multi-asset market making under the quadratic rough Heston," Papers 2212.10164, arXiv.org.
    19. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    20. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.16588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.