IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.16588.html
   My bibliography  Save this paper

Robust Market Making: To Quote, or not To Quote

Author

Listed:
  • Ziyi Wang
  • Carmine Ventre
  • Maria Polukarov

Abstract

Market making is a popular trading strategy, which aims to generate profit from the spread between the quotes posted at either side of the market. It has been shown that training market makers (MMs) with adversarial reinforcement learning allows to overcome the risks due to changing market conditions and to lead to robust performances. Prior work assumes, however, that MMs keep quoting throughout the trading process, but in practice this is not required, even for ``registered'' MMs (that only need to satisfy quoting ratios defined by the market rules). In this paper, we build on this line of work and enrich the strategy space of the MM by allowing to occasionally not quote or provide single-sided quotes. Towards this end, in addition to the MM agents that provide continuous bid-ask quotes, we have designed two new agents with increasingly richer action spaces. The first has the option to provide bid-ask quotes or refuse to quote. The second has the option to provide bid-ask quotes, refuse to quote, or only provide single-sided ask or bid quotes. We employ a model-driven approach to empirically compare the performance of the continuously quoting MM with the two agents above in various types of adversarial environments. We demonstrate how occasional refusal to provide bid-ask quotes improves returns and/or Sharpe ratios. The quoting ratios of well-trained MMs can basically meet any market requirements, reaching up to 99.9$\%$ in some cases.

Suggested Citation

  • Ziyi Wang & Carmine Ventre & Maria Polukarov, 2025. "Robust Market Making: To Quote, or not To Quote," Papers 2508.16588, arXiv.org.
  • Handle: RePEc:arx:papers:2508.16588
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.16588
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.16588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.