IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.08431.html
   My bibliography  Save this paper

Decentralised Finance and Automated Market Making: Predictable Loss and Optimal Liquidity Provision

Author

Listed:
  • 'Alvaro Cartea
  • Fayc{c}al Drissi
  • Marcello Monga

Abstract

Constant product markets with concentrated liquidity (CL) are the most popular type of automated market makers. In this paper, we characterise the continuous-time wealth dynamics of strategic LPs who dynamically adjust their range of liquidity provision in CL pools. Their wealth results from fee income, the value of their holdings in the pool, and rebalancing costs. Next, we derive a self-financing and closed-form optimal liquidity provision strategy where the width of the LP's liquidity range is determined by the profitability of the pool (provision fees minus gas fees), the predictable losses (PL) of the LP's position, and concentration risk. Concentration risk refers to the decrease in fee revenue if the marginal exchange rate (akin to the midprice in a limit order book) in the pool exits the LP's range of liquidity. When the drift in the marginal rate is stochastic, we show how to optimally skew the range of liquidity to increase fee revenue and profit from the expected changes in the marginal rate. Finally, we use Uniswap v3 data to show that, on average, LPs have traded at a significant loss, and to show that the out-of-sample performance of our strategy is superior to the historical performance of LPs in the pool we consider.

Suggested Citation

  • 'Alvaro Cartea & Fayc{c}al Drissi & Marcello Monga, 2023. "Decentralised Finance and Automated Market Making: Predictable Loss and Optimal Liquidity Provision," Papers 2309.08431, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2309.08431
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.08431
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Chiu & Thorsten V Koeppl, 2019. "Blockchain-Based Settlement for Asset Trading," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1716-1753.
    2. Philippe Bergault & Fayçal Drissi & Olivier Guéant, 2022. "Multi-asset Optimal Execution and Statistical Arbitrage Strategies under Ornstein--Uhlenbeck Dynamics," Post-Print hal-03885142, HAL.
    3. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    4. Philippe Bergault & Fayçal Drissi & Olivier Guéant, 2022. "Multi-asset Optimal Execution and Statistical Arbitrage Strategies under Ornstein--Uhlenbeck Dynamics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03680071, HAL.
    5. Philippe Bergault & Fayçal Drissi & Olivier Guéant, 2022. "Multi-asset Optimal Execution and Statistical Arbitrage Strategies under Ornstein--Uhlenbeck Dynamics," Post-Print hal-03680071, HAL.
    6. Fayc{c}al Drissi, 2022. "Solvability of Differential Riccati Equations and Applications to Algorithmic Trading with Signals," Papers 2202.07478, arXiv.org, revised Aug 2023.
    7. Ryan Donnelly & Matthew Lorig, 2020. "Optimal Trading with Differing Trade Signals," Papers 2006.13585, arXiv.org, revised Oct 2020.
    8. Fayçal Drissi, 2022. "Solvability of Differential Riccati Equations and Applications to Algorithmic Trading with Signals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 29(6), pages 457-493, November.
    9. Masaaki Fukasawa & Basile Maire & Marcus Wunsch, 2023. "Model-free Hedging of Impermanent Loss in Geometric Mean Market Makers," Papers 2303.11118, arXiv.org.
    10. Philippe Bergault & Fayc{c}al Drissi & Olivier Gu'eant, 2021. "Multi-asset optimal execution and statistical arbitrage strategies under Ornstein-Uhlenbeck dynamics," Papers 2103.13773, arXiv.org, revised Mar 2022.
    11. Lioba Heimbach & Eric Schertenleib & Roger Wattenhofer, 2022. "Risks and Returns of Uniswap V3 Liquidity Providers," Papers 2205.08904, arXiv.org, revised Sep 2022.
    12. Álvaro Cartea & Yixuan Wang, 2020. "Market Making With Alpha Signals," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(03), pages 1-26, May.
    13. Álvaro Cartea & Ryan Donnelly & Sebastian Jaimungal, 2018. "Enhancing trading strategies with order book signals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 1-35, January.
    14. Martin Forde & Leandro Sánchez-Betancourt & Benjamin Smith, 2022. "Optimal trade execution for Gaussian signals with power-law resilience," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 585-596, March.
    15. Weston Barger & Matthew Lorig, 2019. "Optimal Liquidation Under Stochastic Price Impact," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-28, March.
    16. Ryan Donnelly & Matthew Lorig, 2020. "Optimal Trading with Differing Trade Signals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 317-344, July.
    17. Jason Milionis & Ciamac C. Moallemi & Tim Roughgarden, 2023. "Automated Market Making and Arbitrage Profits in the Presence of Fees," Papers 2305.14604, arXiv.org.
    18. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roger Lee, 2023. "All AMMs are CFMMs. All DeFi markets have invariants. A DeFi market is arbitrage-free if and only if it has an increasing invariant," Papers 2310.09782, arXiv.org, revised Dec 2023.
    2. Robin Fritsch & Andrea Canidio, 2024. "Measuring Arbitrage Losses and Profitability of AMM Liquidity," Papers 2404.05803, arXiv.org, revised Apr 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    2. 'Alvaro Cartea & Fayc{c}al Drissi & Marcello Monga, 2023. "Decentralised Finance and Automated Market Making: Execution and Speculation," Papers 2307.03499, arXiv.org.
    3. Alvaro Arroyo & Alvaro Cartea & Fernando Moreno-Pino & Stefan Zohren, 2023. "Deep Attentive Survival Analysis in Limit Order Books: Estimating Fill Probabilities with Convolutional-Transformers," Papers 2306.05479, arXiv.org.
    4. Marcel Nutz & Kevin Webster & Long Zhao, 2023. "Unwinding Stochastic Order Flow: When to Warehouse Trades," Papers 2310.14144, arXiv.org.
    5. Philippe Bergault & Olivier Gu'eant, 2023. "Modeling liquidity in corporate bond markets: applications to price adjustments," Papers 2309.04216, arXiv.org, revised Oct 2023.
    6. Ivan Guo & Shijia Jin & Kihun Nam, 2023. "Macroscopic Market Making," Papers 2307.14129, arXiv.org.
    7. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    8. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    9. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Mar 2024.
    10. Philippe Bergault & David Evangelista & Olivier Gu'eant & Douglas Vieira, 2018. "Closed-form approximations in multi-asset market making," Papers 1810.04383, arXiv.org, revised Sep 2022.
    11. Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
    12. Felix Dammann & Giorgio Ferrari, 2023. "Optimal execution with multiplicative price impact and incomplete information on the return," Finance and Stochastics, Springer, vol. 27(3), pages 713-768, July.
    13. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    14. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Market making by an FX dealer: tiers, pricing ladders and hedging rates for optimal risk control," Papers 2112.02269, arXiv.org, revised Jun 2023.
    15. Jialiang Luo & Harry Zheng, 2021. "Dynamic Equilibrium of Market Making with Price Competition," Dynamic Games and Applications, Springer, vol. 11(3), pages 556-579, September.
    16. Olivier Gu'eant & Jiang Pu, 2018. "Mid-price estimation for European corporate bonds: a particle filtering approach," Papers 1810.05884, arXiv.org, revised Mar 2019.
    17. Lester Ingber, 2020. "Developing Bid-Ask Probabilities for High-Frequency Trading," Virtual Economics, The London Academy of Science and Business, vol. 3(2), pages 7-24, April.
    18. Olivier Gu'eant & Iuliia Manziuk, 2019. "Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality," Papers 1910.13205, arXiv.org.
    19. Nelson Vadori & Leo Ardon & Sumitra Ganesh & Thomas Spooner & Selim Amrouni & Jared Vann & Mengda Xu & Zeyu Zheng & Tucker Balch & Manuela Veloso, 2022. "Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations," Papers 2210.07184, arXiv.org, revised Aug 2023.
    20. Zhou Fang & Haiqing Xu, 2023. "Over-the-Counter Market Making via Reinforcement Learning," Papers 2307.01816, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.08431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.