IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.14129.html
   My bibliography  Save this paper

Macroscopic Market Making

Author

Listed:
  • Ivan Guo
  • Shijia Jin
  • Kihun Nam

Abstract

We propose the macroscopic market making model \`a la Avellaneda-Stoikov, using continuous processes for orders instead of discrete point processes. The model intends to bridge a gap between market making and optimal execution problems, while shedding light on the influence of order flows on the strategy. We demonstrate our model through three problems. The study provides a comprehensive analysis from Markovian to non-Markovian noises and from linear to non-linear intensity functions, encompassing both bounded and unbounded coefficients. Mathematically, the contribution lies in the existence and uniqueness of the optimal control, guaranteed by the well-posedness of the Hamilton-Jacobi-Bellman equation or the (non-)Lipschitz forward-backward stochastic differential equation.

Suggested Citation

  • Ivan Guo & Shijia Jin & Kihun Nam, 2023. "Macroscopic Market Making," Papers 2307.14129, arXiv.org.
  • Handle: RePEc:arx:papers:2307.14129
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.14129
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Max O. Souza & Y. Thamsten, 2022. "On Regularized Optimal Execution Problems and Their Singular Limits," Applied Mathematical Finance, Taylor & Francis Journals, vol. 29(2), pages 79-109, March.
    2. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    3. Adrian, Tobias & Capponi, Agostino & Fleming, Michael & Vogt, Erik & Zhang, Hongzhong, 2020. "Intraday market making with overnight inventory costs," Journal of Financial Markets, Elsevier, vol. 50(C).
    4. Dirk Becherer & Martin Schweizer, 2005. "Classical solutions to reaction-diffusion systems for hedging problems with interacting Ito and point processes," Papers math/0505208, arXiv.org.
    5. Jean-Pierre Fouque & Sebastian Jaimungal & Yuri F. Saporito, 2021. "Optimal Trading with Signals and Stochastic Price Impact," Papers 2101.10053, arXiv.org, revised Aug 2023.
    6. Sergey Nadtochiy, 2022. "A simple microstructural explanation of the concavity of price impact," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 78-113, January.
    7. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    8. Weston Barger & Matthew Lorig, 2019. "Optimal Liquidation Under Stochastic Price Impact," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-28, March.
    9. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    10. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    2. Matthew Lorig & Zhou Zhou & Bin Zou, 2019. "Optimal Bookmaking," Papers 1907.01056, arXiv.org, revised Mar 2021.
    3. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    4. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    5. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    6. Christoph Kuhn & Johannes Muhle-Karbe, 2013. "Optimal Liquidity Provision," Papers 1309.5235, arXiv.org, revised Feb 2015.
    7. Philippe Bergault & David Evangelista & Olivier Gu'eant & Douglas Vieira, 2018. "Closed-form approximations in multi-asset market making," Papers 1810.04383, arXiv.org, revised Sep 2022.
    8. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    9. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    10. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    11. 'Alvaro Cartea & Fayc{c}al Drissi & Marcello Monga, 2023. "Decentralised Finance and Automated Market Making: Predictable Loss and Optimal Liquidity Provision," Papers 2309.08431, arXiv.org, revised Apr 2024.
    12. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Market making by an FX dealer: tiers, pricing ladders and hedging rates for optimal risk control," Papers 2112.02269, arXiv.org, revised Jun 2023.
    13. Jialiang Luo & Harry Zheng, 2021. "Dynamic Equilibrium of Market Making with Price Competition," Dynamic Games and Applications, Springer, vol. 11(3), pages 556-579, September.
    14. Olivier Gu'eant & Jiang Pu, 2018. "Mid-price estimation for European corporate bonds: a particle filtering approach," Papers 1810.05884, arXiv.org, revised Mar 2019.
    15. Kühn, Christoph & Muhle-Karbe, Johannes, 2015. "Optimal liquidity provision," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2493-2515.
    16. Olivier Gu'eant & Iuliia Manziuk, 2019. "Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality," Papers 1910.13205, arXiv.org.
    17. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    18. Nelson Vadori & Leo Ardon & Sumitra Ganesh & Thomas Spooner & Selim Amrouni & Jared Vann & Mengda Xu & Zeyu Zheng & Tucker Balch & Manuela Veloso, 2022. "Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations," Papers 2210.07184, arXiv.org, revised Aug 2023.
    19. Álvaro Cartea & Sebastian Jaimungal & Damir Kinzebulatov, 2016. "Algorithmic Trading With Learning," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-30, June.
    20. Philippe Bergault & Olivier Guéant, 2020. "Size matters for OTC market makers: general results and dimensionality reduction techniques," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02987894, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.14129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.