IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.08287.html
   My bibliography  Save this paper

Liquidity Competition Between Brokers and an Informed Trader

Author

Listed:
  • Ryan Donnelly
  • Zi Li

Abstract

We study a multi-agent setting in which brokers transact with an informed trader. Through a sequential Stackelberg-type game, brokers manage trading costs and adverse selection with an informed trader. In particular, supplying liquidity to the informed traders allows the brokers to speculate based on the flow information. They simultaneously attempt to minimize inventory risk and trading costs with the lit market based on the informed order flow, also known as the internalization-externalization strategy. We solve in closed form for the trading strategy that the informed trader uses with each broker and propose a system of equations which classify the equilibrium strategies of the brokers. By solving these equations numerically we may study the resulting strategies in equilibrium. Finally, we formulate a competitive game between brokers in order to determine the liquidity prices subject to precommitment supplied to the informed trader and provide a numerical example in which the resulting equilibrium is not Pareto efficient.

Suggested Citation

  • Ryan Donnelly & Zi Li, 2025. "Liquidity Competition Between Brokers and an Informed Trader," Papers 2503.08287, arXiv.org.
  • Handle: RePEc:arx:papers:2503.08287
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.08287
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Schied & Tao Zhang, 2019. "A Market Impact Game Under Transient Price Impact," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 102-121, February.
    2. Philippe Bergault & Leandro S'anchez-Betancourt, 2024. "A Mean Field Game between Informed Traders and a Broker," Papers 2401.05257, arXiv.org.
    3. Álvaro Cartea & Ryan Donnelly & Sebastian Jaimungal, 2018. "Enhancing trading strategies with order book signals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 1-35, January.
    4. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Optimal Portfolio Liquidation with Limit Orders," Papers 1106.3279, arXiv.org, revised Jul 2012.
    5. Ryan Donnelly & Matthew Lorig, 2020. "Optimal Trading with Differing Trade Signals," Papers 2006.13585, arXiv.org, revised Oct 2020.
    6. Ryan Donnelly & Matthew Lorig, 2020. "Optimal Trading with Differing Trade Signals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 317-344, July.
    7. Alexander Barzykin & Robert Boyce & Eyal Neuman, 2024. "Unwinding Toxic Flow with Partial Information," Papers 2407.04510, arXiv.org.
    8. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    9. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    10. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    11. Martin Herdegen & Johannes Muhle-Karbe & Florian Stebegg, 2023. "Liquidity Provision with Adverse Selection and Inventory Costs," Mathematics of Operations Research, INFORMS, vol. 48(3), pages 1286-1315, August.
    12. Xuancheng Huang & Sebastian Jaimungal & Mojtaba Nourian, 2019. "Mean-Field Game Strategies for Optimal Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(2), pages 153-185, March.
    13. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    2. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    3. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    4. Masamitsu Ohnishi & Makoto Shimoshimizu, 2024. "Trade execution games in a Markovian environment," Papers 2405.07184, arXiv.org.
    5. 'Alvaro Cartea & Leandro S'anchez-Betancourt, 2025. "A Simple Strategy to Deal with Toxic Flow," Papers 2503.18005, arXiv.org.
    6. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
    7. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    8. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    9. Carè, Rosella & Cumming, Douglas, 2024. "Technology and automation in financial trading: A bibliometric review," Research in International Business and Finance, Elsevier, vol. 71(C).
    10. Xuchen Wu & Sebastian Jaimungal, 2024. "Broker-Trader Partial Information Nash-Equilibria," Papers 2412.17712, arXiv.org, revised Apr 2025.
    11. David Evangelista & Yuri Thamsten, 2023. "Approximately optimal trade execution strategies under fast mean-reversion," Papers 2307.07024, arXiv.org, revised Aug 2023.
    12. Schoeneborn, Torsten & Schied, Alexander, 2007. "Liquidation in the Face of Adversity: Stealth Vs. Sunshine Trading, Predatory Trading Vs. Liquidity Provision," MPRA Paper 5548, University Library of Munich, Germany.
    13. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    14. Alberto Ciacci & Takumi Sueshige & Hideki Takayasu & Kim Christensen & Misako Takayasu, 2020. "The microscopic relationships between triangular arbitrage and cross-currency correlations in a simple agent based model of foreign exchange markets," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    15. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Jun 2024.
    16. Dimitri Vayanos, 1999. "Strategic Trading and Welfare in a Dynamic Market," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(2), pages 219-254.
    17. Matthew Pritsker, 2005. "Large investors: implications for equilibrium asset, returns, shock absorption, and liquidity," Finance and Economics Discussion Series 2005-36, Board of Governors of the Federal Reserve System (U.S.).
    18. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    19. King, Michael R. & Osler, Carol L. & Rime, Dagfinn, 2013. "The market microstructure approach to foreign exchange: Looking back and looking forward," Journal of International Money and Finance, Elsevier, vol. 38(C), pages 95-119.
    20. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.08287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.