IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.07024.html
   My bibliography  Save this paper

Approximately optimal trade execution strategies under fast mean-reversion

Author

Listed:
  • David Evangelista
  • Yuri Thamsten

Abstract

In a fixed time horizon, appropriately executing a large amount of a particular asset -- meaning a considerable portion of the volume traded within this frame -- is challenging. Especially for illiquid or even highly liquid but also highly volatile ones, the role of "market quality" is quite relevant in properly designing execution strategies. Here, we model it by considering uncertain volatility and liquidity; hence, moments of high or low price impact and risk vary randomly throughout the trading period. We work under the central assumption: although there are these uncertain variations, we assume they occur in a fast mean-reverting fashion. We thus employ singular perturbation arguments to study approximations to the optimal strategies in this framework. By using high-frequency data, we provide estimation methods for our model in face of microstructure noise, as well as numerically assess all of our results.

Suggested Citation

  • David Evangelista & Yuri Thamsten, 2023. "Approximately optimal trade execution strategies under fast mean-reversion," Papers 2307.07024, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2307.07024
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.07024
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    2. Olivier Guéant & Jiang Pu, 2017. "Option Pricing And Hedging With Execution Costs And Market Impact," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 803-831, July.
    3. �lvaro Cartea & Sebastian Jaimungal, 2015. "Optimal execution with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1279-1291, August.
    4. Paulwin Graewe & Ulrich Horst, 2016. "Optimal Trade Execution with Instantaneous Price Impact and Stochastic Resilience," Papers 1611.03435, arXiv.org, revised Jul 2017.
    5. Siu, Chi Chung & Guo, Ivan & Zhu, Song-Ping & Elliott, Robert J., 2019. "Optimal execution with regime-switching market resilience," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 17-40.
    6. Max O. Souza & Y. Thamsten, 2022. "On Regularized Optimal Execution Problems and Their Singular Limits," Applied Mathematical Finance, Taylor & Francis Journals, vol. 29(2), pages 79-109, March.
    7. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    8. Masaaki Fujii, 2022. "Equilibrium Pricing of Securities in the Co-Presence of Cooperative and Non-Cooperative Populations," CIRJE F-Series CIRJE-F-1201, CIRJE, Faculty of Economics, University of Tokyo.
    9. Olivier Féron & Peter Tankov & Laura Tinsi, 2020. "Price Formation and Optimal Trading in Intraday Electricity Markets with a Major Player," Risks, MDPI, vol. 8(4), pages 1-21, December.
    10. Jim Gatheral & Roel Oomen, 2010. "Zero-intelligence realized variance estimation," Finance and Stochastics, Springer, vol. 14(2), pages 249-283, April.
    11. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2019. "Optimal trade execution in order books with stochastic liquidity," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 507-541, April.
    12. Jim Gatheral & Alexander Schied, 2011. "Optimal Trade Execution Under Geometric Brownian Motion In The Almgren And Chriss Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 353-368.
    13. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    14. Masaaki Fujii & Akihiko Takahashi, 2021. "``Equilibrium Price Formation with a Major Player and its Mean Field Limit''," CIRJE F-Series CIRJE-F-1162, CIRJE, Faculty of Economics, University of Tokyo.
    15. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    16. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field Equilibrium Price Formation with Exponential Utility," CIRJE F-Series CIRJE-F-1210, CIRJE, Faculty of Economics, University of Tokyo.
    17. Ulrich Horst & Xiaonyu Xia, 2018. "Continuous viscosity solutions to linear-quadratic stochastic control problems with singular terminal state constraint," Papers 1809.01972, arXiv.org, revised Apr 2020.
    18. Kerry Back & Shmuel Baruch, 2004. "Information in Securities Markets: Kyle Meets Glosten and Milgrom," Econometrica, Econometric Society, vol. 72(2), pages 433-465, March.
    19. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Optimal Portfolio Liquidation with Limit Orders," Papers 1106.3279, arXiv.org, revised Jul 2012.
    20. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    21. Masaaki Fujii, 2022. "Equilibrium Pricing of Securities in the Co-presence of Cooperative and Non-cooperative Populations," CARF F-Series CARF-F-545, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    22. Dirk Becherer & Todor Bilarev & Peter Frentrup, 2018. "Optimal liquidation under stochastic liquidity," Finance and Stochastics, Springer, vol. 22(1), pages 39-68, January.
    23. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    24. Olivier F'eron & Peter Tankov & Laura Tinsi, 2020. "Price formation and optimal trading in intraday electricity markets," Papers 2009.04786, arXiv.org, revised Jun 2021.
    25. Fu, Guanxing & Horst, Ulrich & Xia, Xiaonyu, 2022. "Portfolio Liquidation Games with Self-Exciting Order Flow," Rationality and Competition Discussion Paper Series 327, CRC TRR 190 Rationality and Competition.
    26. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CIRJE F-Series CIRJE-F-1133, CIRJE, Faculty of Economics, University of Tokyo.
    27. Konishi, Hizuru, 2002. "Optimal slice of a VWAP trade," Journal of Financial Markets, Elsevier, vol. 5(2), pages 197-221, April.
    28. David Evangelista & Yuri Saporito & Yuri Thamsten, 2022. "Price formation in financial markets: a game-theoretic perspective," Papers 2202.11416, arXiv.org.
    29. Olivier F'eron & Peter Tankov & Laura Tinsi, 2020. "Price formation and optimal trading in intraday electricity markets with a major player," Papers 2011.07655, arXiv.org.
    30. Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2003. "Master curve for price-impact function," Nature, Nature, vol. 421(6919), pages 129-130, January.
    31. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-467, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    32. Sebastian Jaimungal & Yuri F. Saporito & Max O. Souza & Yuri Thamsten, 2023. "Optimal Trading in Automatic Market Makers with Deep Learning," Papers 2304.02180, arXiv.org.
    33. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field equilibrium price formation with exponential utility," Papers 2304.07108, arXiv.org, revised Oct 2023.
    34. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    35. Patrick Cheridito & Tardu Sepin, 2014. "Optimal Trade Execution Under Stochastic Volatility and Liquidity," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 342-362, September.
    36. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Max O. Souza & Yuri Thamsten, 2021. "On regularized optimal execution problems and their singular limits," Papers 2101.02731, arXiv.org, revised Aug 2023.
    3. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    4. Dimitri Vayanos & Jiang Wang, 2012. "Market Liquidity -- Theory and Empirical Evidence," NBER Working Papers 18251, National Bureau of Economic Research, Inc.
    5. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    7. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    8. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2014. "Optimal execution with nonlinear transient market impact," Papers 1412.4839, arXiv.org.
    9. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    10. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    11. Schoeneborn, Torsten & Schied, Alexander, 2007. "Liquidation in the Face of Adversity: Stealth Vs. Sunshine Trading, Predatory Trading Vs. Liquidity Provision," MPRA Paper 5548, University Library of Munich, Germany.
    12. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    13. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.
    14. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," Papers 2102.10756, arXiv.org, revised Feb 2022.
    15. Jean-Pierre Fouque & Sebastian Jaimungal & Yuri F. Saporito, 2021. "Optimal Trading with Signals and Stochastic Price Impact," Papers 2101.10053, arXiv.org, revised Aug 2023.
    16. Phillip Monin, 2014. "Hedging Market Risk in Optimal Liquidation," Working Papers 14-08, Office of Financial Research, US Department of the Treasury.
    17. Qing-Qing Yang & Wai-Ki Ching & Jia-Wen Gu & Tak-Kuen Siu, 2016. "Generalized Optimal Liquidation Problems Across Multiple Trading Venues," Papers 1607.04553, arXiv.org, revised Aug 2017.
    18. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    19. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2021. "Càdlàg semimartingale strategies for optimal trade execution in stochastic order book models," Finance and Stochastics, Springer, vol. 25(4), pages 757-810, October.
    20. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2020. "C\`adl\`ag semimartingale strategies for optimal trade execution in stochastic order book models," Papers 2006.05863, arXiv.org, revised Jul 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.07024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.