IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i7p1035-d1618273.html
   My bibliography  Save this article

Deep Learning Strategies for Intraday Optimal Carbon Options Trading with Price Impact Considerations

Author

Listed:
  • Qianhui Lai

    (School of Economics, Qingdao University, Qingdao 266071, China)

  • Qiang Yang

    (School of Economics, Qingdao University, Qingdao 266071, China)

Abstract

This paper solves the optimal trading problem of carbon options with a deep learning approach. In this setting, a trader wants to sell out the option inventory within a day. Since trading a large-size order in the market will influence the price, the trader needs to design a trading strategy to maximize the profit and loss (PnL). We propose a deep learning strategy for carbon options optimal trading, which can also be extended to stock options. Using the data from the European carbon market, we apply our deep learning strategy to four types of price impact functions: linear, logarithmic, power law, and time-varying. We show that our deep learning strategy performs much better than the naive strategy and the TWAP (time-weighted average price) strategy, which are widely used in the industry, especially when the price impact function is time-varying. Our neural network strategy’s advantage becomes larger when the market is more illiquid.

Suggested Citation

  • Qianhui Lai & Qiang Yang, 2025. "Deep Learning Strategies for Intraday Optimal Carbon Options Trading with Price Impact Considerations," Mathematics, MDPI, vol. 13(7), pages 1-20, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1035-:d:1618273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/7/1035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/7/1035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Guéant & Jiang Pu, 2017. "Option Pricing And Hedging With Execution Costs And Market Impact," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 803-831, July.
    2. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    3. Paulwin Graewe & Ulrich Horst, 2016. "Optimal Trade Execution with Instantaneous Price Impact and Stochastic Resilience," Papers 1611.03435, arXiv.org, revised Jul 2017.
    4. Liu, Yue & Tian, Lixin & Sun, Huaping & Zhang, Xiling & Kong, Chuimin, 2022. "Option pricing of carbon asset and its application in digital decision-making of carbon asset," Applied Energy, Elsevier, vol. 310(C).
    5. Xu, Li & Deng, Shi-Jie & Thomas, Valerie M., 2016. "Carbon emission permit price volatility reduction through financial options," Energy Economics, Elsevier, vol. 53(C), pages 248-260.
    6. Olbrys, Joanna & Mursztyn, Michal, 2019. "Estimation of intraday stock market resiliency: Short-Time Fourier Transform approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    7. Liu, Hanjie & Zhu, Yuanguo, 2024. "Carbon option pricing based on uncertain fractional differential equation: A binomial tree approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 13-28.
    8. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2019. "Deep Reinforcement Learning for Trading," Papers 1911.10107, arXiv.org.
    9. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    10. Philip, R., 2020. "Estimating permanent price impact via machine learning," Journal of Econometrics, Elsevier, vol. 215(2), pages 414-449.
    11. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2017. "Optimal execution with non-linear transient market impact," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 41-54, January.
    12. Francesco Carlier, 2021. "A Simple Options Trading Strategy based on Technical Indicators," International Journal of Economics and Financial Issues, Econjournals, vol. 11(2), pages 88-91.
    13. Paolo Guasoni & Marko Hans Weber, 2020. "Nonlinear price impact and portfolio choice," Mathematical Finance, Wiley Blackwell, vol. 30(2), pages 341-376, April.
    14. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    15. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    16. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    17. Potters, Marc & Bouchaud, Jean-Philippe, 2003. "More statistical properties of order books and price impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 133-140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. David Evangelista & Yuri Saporito & Yuri Thamsten, 2022. "Price formation in financial markets: a game-theoretic perspective," Papers 2202.11416, arXiv.org.
    4. David Evangelista & Yuri Thamsten, 2023. "Approximately optimal trade execution strategies under fast mean-reversion," Papers 2307.07024, arXiv.org, revised Aug 2023.
    5. Masamitsu Ohnishi & Makoto Shimoshimizu, 2024. "Trade execution games in a Markovian environment," Papers 2405.07184, arXiv.org.
    6. Sim, Min Kyu & Deng, Shijie, 2020. "Estimation of level-I hidden liquidity using the dynamics of limit order-book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    8. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    9. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.
    10. Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
    11. Zhao, Jingdong & Zhu, Hongliang & Li, Xindan, 2018. "Optimal execution with price impact under Cumulative Prospect Theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1228-1237.
    12. Emilio Said, 2022. "Market Impact: Empirical Evidence, Theory and Practice," Working Papers hal-03668669, HAL.
    13. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    14. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    15. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    16. Schnaubelt, Matthias, 2020. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," FAU Discussion Papers in Economics 05/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    18. Nico Achtsis & Dirk Nuyens, 2013. "A Monte Carlo method for optimal portfolio executions," Papers 1312.5919, arXiv.org.
    19. Min Dai & Steven Kou & H. Mete Soner & Chen Yang, 2023. "Leveraged Exchange-Traded Funds with Market Closure and Frictions," Management Science, INFORMS, vol. 69(4), pages 2517-2535, April.
    20. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1035-:d:1618273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.