IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v25y2018i1p1-35.html
   My bibliography  Save this article

Enhancing trading strategies with order book signals

Author

Listed:
  • Álvaro Cartea
  • Ryan Donnelly
  • Sebastian Jaimungal

Abstract

We use high-frequency data from the Nasdaq exchange to build a measure of volume imbalance in the limit order (LO) book. We show that our measure is a good predictor of the sign of the next market order (MO), i.e., buy or sell, and also helps to predict price changes immediately after the arrival of an MO. Based on these empirical findings, we introduce and calibrate a Markov chain-modulated pure jump model of price, spread, LO and MO arrivals and volume imbalance. As an application of the model, we pose and solve a stochastic control problem for an agent who maximizes terminal wealth, subject to inventory penalties, by executing trades using LOs. We use in-sample-data (January to June 2014) to calibrate the model to 11 equities traded in the Nasdaq exchange and use out-of-sample data (July to December 2014) to test the performance of the strategy. We show that introducing our volume imbalance measure into the optimization problem considerably boosts the profits of the strategy. Profits increase because employing our imbalance measure reduces adverse selection costs and positions LOs in the book to take advantage of favourable price movements.

Suggested Citation

  • Álvaro Cartea & Ryan Donnelly & Sebastian Jaimungal, 2018. "Enhancing trading strategies with order book signals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 1-35, January.
  • Handle: RePEc:taf:apmtfi:v:25:y:2018:i:1:p:1-35
    DOI: 10.1080/1350486X.2018.1434009
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2018.1434009
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2018.1434009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haochen Li & Yi Cao & Maria Polukarov & Carmine Ventre, 2023. "An Empirical Analysis on Financial Markets: Insights from the Application of Statistical Physics," Papers 2308.14235, arXiv.org, revised Jun 2024.
    2. Rama Cont & Marvin S. Mueller, 2019. "A stochastic partial differential equation model for limit order book dynamics," Papers 1904.03058, arXiv.org, revised May 2021.
    3. Cong Zheng & Jiafa He & Can Yang, 2023. "Optimal Execution Using Reinforcement Learning," Papers 2306.17178, arXiv.org.
    4. Philippe Bergault & Olivier Gu'eant, 2023. "Liquidity Dynamics in RFQ Markets and Impact on Pricing," Papers 2309.04216, arXiv.org, revised Jun 2024.
    5. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    6. Chu, Gang & Zhang, Yongjie & Zhang, Xiaotao, 2021. "An analysis of impact of cancellation activity on market quality: Evidence from China," Economic Modelling, Elsevier, vol. 102(C).
    7. Peter B. Lerner, 2022. "Fourier Integral Operator Model of Market Liquidity: The Chinese Experience 2009–2010," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    8. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Jun 2024.
    9. Rama Cont & Marvin Muller, 2019. "A Stochastic Pde Model For Limit Order Book Dynamics," Working Papers hal-02090449, HAL.
    10. Li, Zhicheng & Chen, Xinyun & Xing, Haipeng, 2023. "A multifactor regime-switching model for inter-trade durations in the high-frequency limit order market," Economic Modelling, Elsevier, vol. 118(C).
    11. Zijian Shi & John Cartlidge, 2024. "Neural stochastic agent‐based limit order book simulation with neural point process and diffusion probabilistic model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    12. Claudio Bellani & Damiano Brigo & Mikko Pakkanen & Leandro Sanchez-Betancourt, 2021. "Non-average price impact in order-driven markets," Papers 2110.00771, arXiv.org, revised Jan 2022.
    13. Henry Hanifan & Ben Watson & John Cartlidge & Dave Cliff, 2021. "Time Matters: Exploring the Effects of Urgency and Reaction Speed in Automated Traders," Papers 2103.00600, arXiv.org.
    14. Alvaro Arroyo & Alvaro Cartea & Fernando Moreno-Pino & Stefan Zohren, 2023. "Deep Attentive Survival Analysis in Limit Order Books: Estimating Fill Probabilities with Convolutional-Transformers," Papers 2306.05479, arXiv.org.
    15. Bastien Baldacci & Philippe Bergault & Dylan Possamai, 2022. "A mean-field game of market-making against strategic traders," Papers 2203.13053, arXiv.org.
    16. Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
    17. Gao, Xuefeng & Xu, Tianrun, 2022. "Order scoring, bandit learning and order cancellations," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    18. Zhicheng Li & Haipeng Xing & Xinyun Chen, 2019. "A multifactor regime-switching model for inter-trade durations in the limit order market," Papers 1912.00764, arXiv.org.
    19. 'Alvaro Cartea & Fayc{c}al Drissi & Marcello Monga, 2023. "Decentralised Finance and Automated Market Making: Execution and Speculation," Papers 2307.03499, arXiv.org, revised Jul 2024.
    20. Masamitsu Ohnishi & Makoto Shimoshimizu, 2024. "Trade execution games in a Markovian environment," Papers 2405.07184, arXiv.org.
    21. 'Alvaro Cartea & Fayc{c}al Drissi & Marcello Monga, 2023. "Decentralised Finance and Automated Market Making: Predictable Loss and Optimal Liquidity Provision," Papers 2309.08431, arXiv.org, revised Jun 2024.
    22. Joseph Jerome & Gregory Palmer & Rahul Savani, 2022. "Market Making with Scaled Beta Policies," Papers 2207.03352, arXiv.org, revised Sep 2022.
    23. Xuan Tao & Andrew Day & Lan Ling & Samuel Drapeau, 2020. "On Detecting Spoofing Strategies in High Frequency Trading," Papers 2009.14818, arXiv.org, revised Dec 2020.
    24. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:25:y:2018:i:1:p:1-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.