IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v25y2018i1p1-35.html
   My bibliography  Save this article

Enhancing trading strategies with order book signals

Author

Listed:
  • Álvaro Cartea
  • Ryan Donnelly
  • Sebastian Jaimungal

Abstract

We use high-frequency data from the Nasdaq exchange to build a measure of volume imbalance in the limit order (LO) book. We show that our measure is a good predictor of the sign of the next market order (MO), i.e., buy or sell, and also helps to predict price changes immediately after the arrival of an MO. Based on these empirical findings, we introduce and calibrate a Markov chain-modulated pure jump model of price, spread, LO and MO arrivals and volume imbalance. As an application of the model, we pose and solve a stochastic control problem for an agent who maximizes terminal wealth, subject to inventory penalties, by executing trades using LOs. We use in-sample-data (January to June 2014) to calibrate the model to 11 equities traded in the Nasdaq exchange and use out-of-sample data (July to December 2014) to test the performance of the strategy. We show that introducing our volume imbalance measure into the optimization problem considerably boosts the profits of the strategy. Profits increase because employing our imbalance measure reduces adverse selection costs and positions LOs in the book to take advantage of favourable price movements.

Suggested Citation

  • Álvaro Cartea & Ryan Donnelly & Sebastian Jaimungal, 2018. "Enhancing trading strategies with order book signals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 1-35, January.
  • Handle: RePEc:taf:apmtfi:v:25:y:2018:i:1:p:1-35
    DOI: 10.1080/1350486X.2018.1434009
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2018.1434009
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2018.1434009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:25:y:2018:i:1:p:1-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.