IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.07478.html
   My bibliography  Save this paper

Solvability of Differential Riccati Equations and Applications to Algorithmic Trading with Signals

Author

Listed:
  • Fayc{c}al Drissi

Abstract

We study a differential Riccati equation (DRE) with indefinite matrix coefficients, which arises in a wide class of practical problems. We show that the DRE solves an associated control problem, which is key to provide existence and uniqueness of a solution. As an application, we solve two algorithmic trading problems in which the agent adopts a constant absolute risk-aversion (CARA) utility function, and where the optimal strategies use signals and past observations of prices to improve their performance. First, we derive a multi-asset market making strategy in over-the-counter markets, where the market maker uses an external trading venue to hedge risk. Second, we derive an optimal trading strategy that uses prices and signals to learn the drift in the asset prices.

Suggested Citation

  • Fayc{c}al Drissi, 2022. "Solvability of Differential Riccati Equations and Applications to Algorithmic Trading with Signals," Papers 2202.07478, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2202.07478
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.07478
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    2. Erhan Bayraktar & Michael Ludkovski, 2014. "Liquidation In Limit Order Books With Controlled Intensity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 627-650, October.
    3. Alexis Bismuth & Olivier Gu'eant & Jiang Pu, 2016. "Portfolio choice, portfolio liquidation, and portfolio transition under drift uncertainty," Papers 1611.07843, arXiv.org, revised Mar 2019.
    4. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    5. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    6. Álvaro Cartea & Luhui Gan & Sebastian Jaimungal, 2019. "Trading co‐integrated assets with price impact," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 542-567, April.
    7. Alexis Bismuth & Olivier Guéant & Jiang Pu, 2019. "Portfolio choice, portfolio liquidation, and portfolio transition under drift uncertainty," Post-Print hal-03252482, HAL.
    8. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Optimal Portfolio Liquidation with Limit Orders," Papers 1106.3279, arXiv.org, revised Jul 2012.
    9. Alexis Bismuth & Olivier Guéant & Jiang Pu, 2019. "Portfolio choice, portfolio liquidation, and portfolio transition under drift uncertainty," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03252482, HAL.
    10. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    11. Olivier Guéant & Royer Guillaume, 2014. "VWAP execution and guaranteed VWAP," Post-Print hal-01393121, HAL.
    12. Olivier Gu'eant & Guillaume Royer, 2013. "VWAP execution and guaranteed VWAP," Papers 1306.2832, arXiv.org, revised May 2014.
    13. Philippe Bergault & Fayc{c}al Drissi & Olivier Gu'eant, 2021. "Multi-asset optimal execution and statistical arbitrage strategies under Ornstein-Uhlenbeck dynamics," Papers 2103.13773, arXiv.org, revised Mar 2022.
    14. Philippe Casgrain & Sebastian Jaimungal, 2019. "Trading algorithms with learning in latent alpha models," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 735-772, July.
    15. Christoph Frei & Nicholas Westray, 2015. "Optimal Execution Of A Vwap Order: A Stochastic Control Approach," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 612-639, July.
    16. Konishi, Hizuru, 2002. "Optimal slice of a VWAP trade," Journal of Financial Markets, Elsevier, vol. 5(2), pages 197-221, April.
    17. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    18. Bastien Baldacci & Iuliia Manziuk, 2020. "Adaptive trading strategies across liquidity pools," Papers 2008.07807, arXiv.org.
    19. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    20. Christopher Lorenz & Alexander Schied, 2012. "Drift dependence of optimal trade execution strategies under transient price impact," Papers 1204.2716, arXiv.org, revised Mar 2013.
    21. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    22. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Dammann & Giorgio Ferrari, 2023. "Optimal execution with multiplicative price impact and incomplete information on the return," Finance and Stochastics, Springer, vol. 27(3), pages 713-768, July.
    2. 'Alvaro Cartea & Fayc{c}al Drissi & Marcello Monga, 2023. "Decentralised Finance and Automated Market Making: Predictable Loss and Optimal Liquidity Provision," Papers 2309.08431, arXiv.org, revised Apr 2024.
    3. Dammann, Felix & Ferrari, Giorgio, 2022. "Optimal Execution with Multiplicative Price Impact and Incomplete Information on the Return," Center for Mathematical Economics Working Papers 663, Center for Mathematical Economics, Bielefeld University.
    4. Felix Dammann & Giorgio Ferrari, 2022. "Optimal Execution with Multiplicative Price Impact and Incomplete Information on the Return," Papers 2202.10414, arXiv.org, revised Nov 2022.
    5. Alvaro Arroyo & Alvaro Cartea & Fernando Moreno-Pino & Stefan Zohren, 2023. "Deep Attentive Survival Analysis in Limit Order Books: Estimating Fill Probabilities with Convolutional-Transformers," Papers 2306.05479, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Bergault & Fayc{c}al Drissi & Olivier Gu'eant, 2021. "Multi-asset optimal execution and statistical arbitrage strategies under Ornstein-Uhlenbeck dynamics," Papers 2103.13773, arXiv.org, revised Mar 2022.
    2. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    3. Qixuan Luo & Shijia Song & Handong Li, 2023. "Research on the Effects of Liquidation Strategies in the Multi-asset Artificial Market," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1721-1750, December.
    4. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    5. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    6. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    7. Christopher Kath & Florian Ziel, 2020. "Optimal Order Execution in Intraday Markets: Minimizing Costs in Trade Trajectories," Papers 2009.07892, arXiv.org, revised Oct 2020.
    8. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    9. Olivier Gu'eant, 2012. "Optimal execution and block trade pricing: a general framework," Papers 1210.6372, arXiv.org, revised Dec 2014.
    10. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "Optimal liquidation under indirect price impact with propagator," LIDAM Discussion Papers ISBA 2023012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Lokka, A. & Xu, Junwei, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model," LSE Research Online Documents on Economics 106977, London School of Economics and Political Science, LSE Library.
    12. Dirk Becherer & Todor Bilarev & Peter Frentrup, 2015. "Optimal Asset Liquidation with Multiplicative Transient Price Impact," Papers 1501.01892, arXiv.org, revised Apr 2017.
    13. Roman Gayduk & Sergey Nadtochiy, 2016. "Endogenous Formation of Limit Order Books: Dynamics Between Trades," Papers 1605.09720, arXiv.org, revised Jun 2017.
    14. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    15. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    16. Charles-Albert Lehalle & Charafeddine Mouzouni, 2019. "A mean field game of portfolio trading and its consequences on perceived correlations," Working Papers hal-02003143, HAL.
    17. Rossella Agliardi & Ramazan Gençay, 2017. "Optimal Trading Strategies With Limit Orders," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-16, February.
    18. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    19. repec:dau:papers:123456789/7391 is not listed on IDEAS
    20. Julien Vaes & Raphael Hauser, 2018. "Optimal Trade Execution with Uncertain Volume Target," Papers 1810.11454, arXiv.org, revised Sep 2021.
    21. Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," Papers 1502.04521, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.07478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.