IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.09683.html
   My bibliography  Save this paper

Networked Information Aggregation via Machine Learning

Author

Listed:
  • Michael Kearns
  • Aaron Roth
  • Emily Ryu

Abstract

We study a distributed learning problem in which learning agents are embedded in a directed acyclic graph (DAG). There is a fixed and arbitrary distribution over feature/label pairs, and each agent or vertex in the graph is able to directly observe only a subset of the features -- potentially a different subset for every agent. The agents learn sequentially in some order consistent with a topological sort of the DAG, committing to a model mapping observations to predictions of the real-valued label. Each agent observes the predictions of their parents in the DAG, and trains their model using both the features of the instance that they directly observe, and the predictions of their parents as additional features. We ask when this process is sufficient to achieve \emph{information aggregation}, in the sense that some agent in the DAG is able to learn a model whose error is competitive with the best model that could have been learned (in some hypothesis class) with direct access to \emph{all} features, despite the fact that no single agent in the network has such access. We give upper and lower bounds for this problem for both linear and general hypothesis classes. Our results identify the \emph{depth} of the DAG as the key parameter: information aggregation can occur over sufficiently long paths in the DAG, assuming that all of the relevant features are well represented along the path, and there are distributions over which information aggregation cannot occur even in the linear case, and even in arbitrarily large DAGs that do not have sufficient depth (such as a hub-and-spokes topology in which the spoke vertices collectively see all the features). We complement our theoretical results with a comprehensive set of experiments.

Suggested Citation

  • Michael Kearns & Aaron Roth & Emily Ryu, 2025. "Networked Information Aggregation via Machine Learning," Papers 2507.09683, arXiv.org.
  • Handle: RePEc:arx:papers:2507.09683
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.09683
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.09683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.