IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.02439.html
   My bibliography  Save this paper

Introducing a New Brexit-Related Uncertainty Index: Its Evolution and Economic Consequences

Author

Listed:
  • Ismet Gocer
  • Julia Darby
  • Serdar Ongan

Abstract

Important game-changer economic events and transformations cause uncertainties that may affect investment decisions, capital flows, international trade, and macroeconomic variables. One such major transformation is Brexit, which refers to the multiyear process through which the UK withdrew from the EU. This study develops and uses a new Brexit-Related Uncertainty Index (BRUI). In creating this index, we apply Text Mining, Context Window, Natural Language Processing (NLP), and Large Language Models (LLMs) from Deep Learning techniques to analyse the monthly country reports of the Economist Intelligence Unit from May 2012 to January 2025. Additionally, we employ a standard vector autoregression (VAR) analysis to examine the model-implied responses of various macroeconomic variables to BRUI shocks. While developing the BRUI, we also create a complementary COVID-19 Related Uncertainty Index (CRUI) to distinguish the uncertainties stemming from these distinct events. Empirical findings and comparisons of BRUI with other earlier-developed uncertainty indexes demonstrate the robustness of the new index. This new index can assist British policymakers in measuring and understanding the impacts of Brexit-related uncertainties, enabling more effective policy formulation.

Suggested Citation

  • Ismet Gocer & Julia Darby & Serdar Ongan, 2025. "Introducing a New Brexit-Related Uncertainty Index: Its Evolution and Economic Consequences," Papers 2507.02439, arXiv.org, revised Jul 2025.
  • Handle: RePEc:arx:papers:2507.02439
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.02439
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.02439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.