IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.00763.html
   My bibliography  Save this paper

Comparing Misspecified Models with Big Data: A Variational Bayesian Perspective

Author

Listed:
  • Yong Li
  • Sushanta K. Mallick
  • Tao Zeng
  • Junxing Zhang

Abstract

Optimal data detection in massive multiple-input multiple-output (MIMO) systems often requires prohibitively high computational complexity. A variety of detection algorithms have been proposed in the literature, offering different trade-offs between complexity and detection performance. In recent years, Variational Bayes (VB) has emerged as a widely used method for addressing statistical inference in the context of massive data. This study focuses on misspecified models and examines the risk functions associated with predictive distributions derived from variational posterior distributions. These risk functions, defined as the expectation of the Kullback-Leibler (KL) divergence between the true data-generating density and the variational predictive distributions, provide a framework for assessing predictive performance. We propose two novel information criteria for predictive model comparison based on these risk functions. Under certain regularity conditions, we demonstrate that the proposed information criteria are asymptotically unbiased estimators of their respective risk functions. Through comprehensive numerical simulations and empirical applications in economics and finance, we demonstrate the effectiveness of these information criteria in comparing misspecified models in the context of massive data.

Suggested Citation

  • Yong Li & Sushanta K. Mallick & Tao Zeng & Junxing Zhang, 2025. "Comparing Misspecified Models with Big Data: A Variational Bayesian Perspective," Papers 2507.00763, arXiv.org.
  • Handle: RePEc:arx:papers:2507.00763
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.00763
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.00763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.