IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.22885.html
   My bibliography  Save this paper

Causal Inference for Aggregated Treatment

Author

Listed:
  • Carolina Caetano
  • Gregorio Caetano
  • Brantly Callaway
  • Derek Dyal

Abstract

In this paper, we study causal inference when the treatment variable is an aggregation of multiple sub-treatment variables. Researchers often report marginal causal effects for the aggregated treatment, implicitly assuming that the target parameter corresponds to a well-defined average of sub-treatment effects. We show that, even in an ideal scenario for causal inference such as random assignment, the weights underlying this average have some key undesirable properties: they are not unique, they can be negative, and, holding all else constant, these issues become exponentially more likely to occur as the number of sub-treatments increases and the support of each sub-treatment grows. We propose approaches to avoid these problems, depending on whether or not the sub-treatment variables are observed.

Suggested Citation

  • Carolina Caetano & Gregorio Caetano & Brantly Callaway & Derek Dyal, 2025. "Causal Inference for Aggregated Treatment," Papers 2506.22885, arXiv.org.
  • Handle: RePEc:arx:papers:2506.22885
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.22885
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.22885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.