IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.07993.html
   My bibliography  Save this paper

Stochastic portfolio theory with price impact

Author

Listed:
  • David Itkin

Abstract

We develop a framework for stochastic portfolio theory (SPT), which incorporates modern nonlinear price impact and impact decay models. Our main result derives the celebrated master formula for additive functional generation of trading strategies in a general high-dimensional market model with price impact. We also develop formulas for an investor's relative wealth with respect to the market portfolio, conditions that guarantee positive observed market prices and derive a stochastic differential equation governing the dynamics of the observed price, investor's holdings and price impact processes. As an application of these results, we develop conditions for relative arbitrage in the price impact setting analogous to previously obtained results for the frictionless setting. Numerical experiments are presented to complement the theoretical results.

Suggested Citation

  • David Itkin, 2025. "Stochastic portfolio theory with price impact," Papers 2506.07993, arXiv.org, revised Jun 2025.
  • Handle: RePEc:arx:papers:2506.07993
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.07993
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Abi Jaber & Eyal Neuman, 2025. "Optimal Liquidation with Signals: the General Propagator Case," Post-Print hal-03835948, HAL.
    2. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    3. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2003. "Fluctuations and response in financial markets: the subtle nature of `random' price changes," Papers cond-mat/0307332, arXiv.org, revised Aug 2003.
    4. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    5. Ruf, Johannes & Xie, Kangjianan, 2020. "Impact of proportional transaction costs on systematically generated portfolios," LSE Research Online Documents on Economics 104696, London School of Economics and Political Science, LSE Library.
    6. Nataliya Bershova & Dmitry Rakhlin, 2013. "The non-linear market impact of large trades: evidence from buy-side order flow," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1759-1778, November.
    7. Karatzas, Ioannis & Ruf, Johannes, 2017. "Trading strategies generated by Lyapunov functions," LSE Research Online Documents on Economics 69177, London School of Economics and Political Science, LSE Library.
    8. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    9. Larsson, Martin & Ruf, Johannes, 2021. "Relative arbitrage: sharp time horizons and motion by curvature," LSE Research Online Documents on Economics 108546, London School of Economics and Political Science, LSE Library.
    10. Fernholz, Robert, 1999. "On the diversity of equity markets," Journal of Mathematical Economics, Elsevier, vol. 31(3), pages 393-417, April.
    11. Fernholz, E. Robert & Karatzas, Ioannis & Ruf, Johannes, 2018. "Volatility and arbitrage," LSE Research Online Documents on Economics 75234, London School of Economics and Political Science, LSE Library.
    12. Ioannis Karatzas & Johannes Ruf, 2017. "Trading strategies generated by Lyapunov functions," Finance and Stochastics, Springer, vol. 21(3), pages 753-787, July.
    13. David Itkin & Martin Larsson, 2021. "Open Markets and Hybrid Jacobi Processes," Papers 2110.14046, arXiv.org, revised Mar 2024.
    14. Martin Larsson & Johannes Ruf, 2020. "Relative Arbitrage: Sharp Time Horizons and Motion by Curvature," Papers 2003.13601, arXiv.org, revised Feb 2021.
    15. Gârleanu, Nicolae & Pedersen, Lasse Heje, 2016. "Dynamic portfolio choice with frictions," Journal of Economic Theory, Elsevier, vol. 165(C), pages 487-516.
    16. Martin Larsson & Johannes Ruf, 2021. "Relative arbitrage: Sharp time horizons and motion by curvature," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 885-906, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Itkin & Benedikt Koch & Martin Larsson & Josef Teichmann, 2022. "Ergodic robust maximization of asymptotic growth under stochastic volatility," Papers 2211.15628, arXiv.org.
    2. Emilio Said, 2022. "Market Impact: Empirical Evidence, Theory and Practice," Working Papers hal-03668669, HAL.
    3. Eduardo Abi Jaber & Alessandro Bondi & Nathan De Carvalho & Eyal Neuman & Sturmius Tuschmann, 2025. "Fredholm Approach to Nonlinear Propagator Models," Papers 2503.04323, arXiv.org.
    4. Emilio Said, 2022. "Market Impact: Empirical Evidence, Theory and Practice," Papers 2205.07385, arXiv.org.
    5. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    6. Marcel Nutz & Kevin Webster & Long Zhao, 2023. "Unwinding Stochastic Order Flow: When to Warehouse Trades," Papers 2310.14144, arXiv.org.
    7. Erhan Bayraktar & Donghan Kim & Abhishek Tilva, 2024. "Quantifying dimensional change in stochastic portfolio theory," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 977-1021, July.
    8. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    9. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    10. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2021. "Càdlàg semimartingale strategies for optimal trade execution in stochastic order book models," Finance and Stochastics, Springer, vol. 25(4), pages 757-810, October.
    11. Ibrahim Ekren & Johannes Muhle-Karbe, 2017. "Portfolio Choice with Small Temporary and Transient Price Impact," Papers 1705.00672, arXiv.org, revised Apr 2020.
    12. David Itkin & Martin Larsson, 2024. "Calibrated rank volatility stabilized models for large equity markets," Papers 2403.04674, arXiv.org.
    13. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2014. "Optimal Trade Execution And Price Manipulation In Order Books With Time-Varying Liquidity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 651-695, October.
    14. Cuchiero, Christa, 2019. "Polynomial processes in stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1829-1872.
    15. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    16. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "Optimal liquidation under indirect price impact with propagator," LIDAM Discussion Papers ISBA 2023012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2022. "Reducing Obizhaeva-Wang type trade execution problems to LQ stochastic control problems," Papers 2206.03772, arXiv.org, revised Sep 2023.
    18. Cox, Alexander M.G. & Robinson, Benjamin A., 2023. "Optimal control of martingales in a radially symmetric environment," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 149-198.
    19. Daniel Hern'andez-Hern'andez & Harold A. Moreno-Franco & Jos'e Luis P'erez, 2017. "Periodic strategies in optimal execution with multiplicative price impact," Papers 1705.00284, arXiv.org, revised May 2018.
    20. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.07993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.