IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v34y2024i3p977-1021.html
   My bibliography  Save this article

Quantifying dimensional change in stochastic portfolio theory

Author

Listed:
  • Erhan Bayraktar
  • Donghan Kim
  • Abhishek Tilva

Abstract

In this paper, we develop the theory of functional generation of portfolios in an equity market with changing dimension. By introducing dimensional jumps in the market, as well as jumps in stock capitalization between the dimensional jumps, we construct different types of self‐financing stock portfolios (additive, multiplicative, and rank‐based) in a very general setting. Our study explains how a dimensional change caused by a listing or delisting event of a stock, and unexpected shocks in the market, affect portfolio return. We also provide empirical analyses of some classical portfolios, quantifying the impact of dimensional change in portfolio performance relative to the market.

Suggested Citation

  • Erhan Bayraktar & Donghan Kim & Abhishek Tilva, 2024. "Quantifying dimensional change in stochastic portfolio theory," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 977-1021, July.
  • Handle: RePEc:bla:mathfi:v:34:y:2024:i:3:p:977-1021
    DOI: 10.1111/mafi.12425
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12425
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Martin Herdegen, 2017. "No-Arbitrage In A Numéraire-Independent Modeling Framework," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 568-603, April.
    2. Alexander Schied & Leo Speiser & Iryna Voloshchenko, 2016. "Model-free portfolio theory and its functional master formula," Papers 1606.03325, arXiv.org, revised May 2018.
    3. Ruf, Johannes & Xie, Kangjianan, 2020. "Impact of proportional transaction costs on systematically generated portfolios," LSE Research Online Documents on Economics 104696, London School of Economics and Political Science, LSE Library.
    4. Karatzas, Ioannis & Ruf, Johannes, 2017. "Trading strategies generated by Lyapunov functions," LSE Research Online Documents on Economics 69177, London School of Economics and Political Science, LSE Library.
    5. Erhan Bayraktar & Donghan Kim & Abhishek Tilva, 2024. "Arbitrage theory in a market of stochastic dimension," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 847-895, July.
    6. Patrick Mijatovic, 2021. "Beating the Market with Generalized Generating Portfolios," Papers 2101.07084, arXiv.org.
    7. Ioannis Karatzas & Donghan Kim, 2020. "Trading strategies generated pathwise by functions of market weights," Finance and Stochastics, Springer, vol. 24(2), pages 423-463, April.
    8. Johannes Ruf & Kangjianan Xie, 2019. "Generalised Lyapunov Functions and Functionally Generated Trading Strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(4), pages 293-327, July.
    9. Ioannis Karatzas & Johannes Ruf, 2017. "Trading strategies generated by Lyapunov functions," Finance and Stochastics, Springer, vol. 21(3), pages 753-787, July.
    10. David Itkin & Martin Larsson, 2021. "Open Markets and Hybrid Jacobi Processes," Papers 2110.14046, arXiv.org, revised Mar 2024.
    11. Ting-Kam Wong, 2015. "Optimization of relative arbitrage," Annals of Finance, Springer, vol. 11(3), pages 345-382, November.
    12. Winslow Strong, 2014. "Fundamental theorems of asset pricing for piecewise semimartingales of stochastic dimension," Finance and Stochastics, Springer, vol. 18(3), pages 487-514, July.
    13. Ting-Kam Leonard Wong, 2017. "On portfolios generated by optimal transport," Papers 1709.03169, arXiv.org, revised Sep 2017.
    14. repec:ehl:lserod:102424 is not listed on IDEAS
    15. Robert Fernholz, 1999. "Portfolio Generating Functions," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 15, pages 344-367, World Scientific Publishing Co. Pte. Ltd..
    16. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    17. Donghan Kim, 2022. "Market-to-book Ratio in Stochastic Portfolio Theory," Papers 2206.03742, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven Campbell & Qien Song & Ting-Kam Leonard Wong, 2024. "Macroscopic properties of equity markets: stylized facts and portfolio performance," Papers 2409.10859, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Karatzas & Donghan Kim, 2020. "Trading strategies generated pathwise by functions of market weights," Finance and Stochastics, Springer, vol. 24(2), pages 423-463, April.
    2. Donghan Kim, 2022. "Market-to-book Ratio in Stochastic Portfolio Theory," Papers 2206.03742, arXiv.org.
    3. Patrick Mijatovic, 2021. "Beating the Market with Generalized Generating Portfolios," Papers 2101.07084, arXiv.org.
    4. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Promel, 2021. "Model-free Portfolio Theory: A Rough Path Approach," Papers 2109.01843, arXiv.org, revised Oct 2022.
    5. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Prömel, 2023. "Model‐free portfolio theory: A rough path approach," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 709-765, July.
    6. Donghan Kim, 2023. "Market-to-book ratio in stochastic portfolio theory," Finance and Stochastics, Springer, vol. 27(2), pages 401-434, April.
    7. Johannes Ruf & Kangjianan Xie, 2018. "Generalised Lyapunov Functions and Functionally Generated Trading Strategies," Papers 1801.07817, arXiv.org.
    8. Ruf, Johannes & Xie, Kangjianan, 2020. "Impact of proportional transaction costs on systematically generated portfolios," LSE Research Online Documents on Economics 104696, London School of Economics and Political Science, LSE Library.
    9. Christa Cuchiero & Janka Moller, 2023. "Signature Methods in Stochastic Portfolio Theory," Papers 2310.02322, arXiv.org, revised Oct 2024.
    10. David Itkin & Benedikt Koch & Martin Larsson & Josef Teichmann, 2022. "Ergodic robust maximization of asymptotic growth under stochastic volatility," Papers 2211.15628, arXiv.org.
    11. repec:ehl:lserod:102424 is not listed on IDEAS
    12. Johannes Ruf & Kangjianan Xie, 2019. "The impact of proportional transaction costs on systematically generated portfolios," Papers 1904.08925, arXiv.org.
    13. Erhan Bayraktar & Donghan Kim & Abhishek Tilva, 2024. "Arbitrage theory in a market of stochastic dimension," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 847-895, July.
    14. Ting-Kam Leonard Wong, 2017. "On portfolios generated by optimal transport," Papers 1709.03169, arXiv.org, revised Sep 2017.
    15. Donghan Kim, 2019. "Open Markets," Papers 1912.13110, arXiv.org.
    16. Steven Campbell & Qien Song & Ting-Kam Leonard Wong, 2024. "Macroscopic properties of equity markets: stylized facts and portfolio performance," Papers 2409.10859, arXiv.org, revised Oct 2024.
    17. Michael Heinrich Baumann, 2022. "Beating the market? A mathematical puzzle for market efficiency," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 279-325, June.
    18. Kangjianan Xie, 2020. "Leakage of rank-dependent functionally generated trading strategies," Annals of Finance, Springer, vol. 16(4), pages 573-591, December.
    19. Ricardo T. Fernholz & Robert Fernholz, 2022. "Permutation-weighted portfolios and the efficiency of commodity futures markets," Annals of Finance, Springer, vol. 18(1), pages 81-108, March.
    20. Ioannis Karatzas & Donghan Kim, 2018. "Trading Strategies Generated Pathwise by Functions of Market Weights," Papers 1809.10123, arXiv.org, revised Mar 2019.
    21. Andrew L. Allan & Chong Liu & David J. Promel, 2021. "A C\`adl\`ag Rough Path Foundation for Robust Finance," Papers 2109.04225, arXiv.org, revised May 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:34:y:2024:i:3:p:977-1021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.