IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v28y2024i1d10.1007_s00780-023-00522-0.html
   My bibliography  Save this article

A càdlàg rough path foundation for robust finance

Author

Listed:
  • Andrew L. Allan

    (Durham University)

  • Chong Liu

    (ShanghaiTech University)

  • David J. Prömel

    (University of Mannheim)

Abstract

Using rough path theory, we provide a pathwise foundation for stochastic Itô integration which covers most commonly applied trading strategies and mathematical models of financial markets, including those under Knightian uncertainty. To this end, we introduce the so-called property (RIE) for càdlàg paths, which is shown to imply the existence of a càdlàg rough path and of quadratic variation in the sense of Föllmer. We prove that the corresponding rough integrals exist as limits of left-point Riemann sums along a suitable sequence of partitions. This allows one to treat integrands of non-gradient type and gives access to the powerful stability estimates of rough path theory. Additionally, we verify that (path-dependent) functionally generated trading strategies and Cover’s universal portfolio are admissible integrands, and that property (RIE) is satisfied by both (Young) semimartingales and typical price paths.

Suggested Citation

  • Andrew L. Allan & Chong Liu & David J. Prömel, 2024. "A càdlàg rough path foundation for robust finance," Finance and Stochastics, Springer, vol. 28(1), pages 215-257, January.
  • Handle: RePEc:spr:finsto:v:28:y:2024:i:1:d:10.1007_s00780-023-00522-0
    DOI: 10.1007/s00780-023-00522-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-023-00522-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-023-00522-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Armstrong & Claudio Bellani & Damiano Brigo & Thomas Cass, 2021. "Option pricing models without probability: a rough paths approach," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1494-1521, October.
    2. Vladimir Vovk, 2012. "Continuous-time trading and the emergence of probability," Finance and Stochastics, Springer, vol. 16(4), pages 561-609, October.
    3. Ioannis Karatzas & Johannes Ruf, 2017. "Trading strategies generated by Lyapunov functions," Finance and Stochastics, Springer, vol. 21(3), pages 753-787, July.
    4. Mark Davis & Jan Obłój & Vimal Raval, 2014. "Arbitrage Bounds For Prices Of Weighted Variance Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 821-854, October.
    5. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    6. Karatzas, Ioannis & Ruf, Johannes, 2017. "Trading strategies generated by Lyapunov functions," LSE Research Online Documents on Economics 69177, London School of Economics and Political Science, LSE Library.
    7. Karandikar, Rajeeva L., 1995. "On pathwise stochastic integration," Stochastic Processes and their Applications, Elsevier, vol. 57(1), pages 11-18, May.
    8. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    9. Winslow Strong, 2014. "Fundamental theorems of asset pricing for piecewise semimartingales of stochastic dimension," Finance and Stochastics, Springer, vol. 18(3), pages 487-514, July.
    10. Hans Follmer & Alexander Schied, 2013. "Probabilistic aspects of finance," Papers 1309.7759, arXiv.org.
    11. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    12. Ioannis Karatzas & Donghan Kim, 2020. "Trading strategies generated pathwise by functions of market weights," Finance and Stochastics, Springer, vol. 24(2), pages 423-463, April.
    13. Bruno Dupire, 2019. "Functional Itô calculus," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 721-729, May.
    14. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    15. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    16. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    17. Candia Riga, 2016. "A pathwise approach to continuous-time trading," Papers 1602.04946, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew L. Allan & Chong Liu & David J. Promel, 2021. "A C\`adl\`ag Rough Path Foundation for Robust Finance," Papers 2109.04225, arXiv.org, revised May 2023.
    2. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Prömel, 2023. "Model‐free portfolio theory: A rough path approach," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 709-765, July.
    3. Erhan Bayraktar & Donghan Kim & Abhishek Tilva, 2024. "Quantifying dimensional change in stochastic portfolio theory," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 977-1021, July.
    4. Nicolas Perkowski & David J. Promel, 2013. "Pathwise stochastic integrals for model free finance," Papers 1311.6187, arXiv.org, revised Jun 2016.
    5. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Pathwise superhedging on prediction sets," Finance and Stochastics, Springer, vol. 24(1), pages 215-248, January.
    6. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Promel, 2021. "Model-free Portfolio Theory: A Rough Path Approach," Papers 2109.01843, arXiv.org, revised Oct 2022.
    7. Łochowski, Rafał M. & Perkowski, Nicolas & Prömel, David J., 2018. "A superhedging approach to stochastic integration," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4078-4103.
    8. Erhan Bayraktar & Donghan Kim & Abhishek Tilva, 2024. "Arbitrage theory in a market of stochastic dimension," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 847-895, July.
    9. Rafa{l} M. {L}ochowski & Nicolas Perkowski & David J. Promel, 2016. "A superhedging approach to stochastic integration," Papers 1609.02349, arXiv.org, revised Sep 2017.
    10. Christa Cuchiero & Janka Moller, 2023. "Signature Methods in Stochastic Portfolio Theory," Papers 2310.02322, arXiv.org, revised Oct 2024.
    11. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    12. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    13. Michael Heinrich Baumann, 2022. "Beating the market? A mathematical puzzle for market efficiency," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 279-325, June.
    14. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2017. "Pathwise superhedging on prediction sets," Papers 1711.02764, arXiv.org, revised Oct 2019.
    15. Ioannis Karatzas & Donghan Kim, 2020. "Trading strategies generated pathwise by functions of market weights," Finance and Stochastics, Springer, vol. 24(2), pages 423-463, April.
    16. Dirk Becherer & Klebert Kentia, 2017. "Good Deal Hedging and Valuation under Combined Uncertainty about Drift and Volatility," Papers 1704.02505, arXiv.org.
    17. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    18. Amine Ismail & Huy^en Pham, 2016. "Robust Markowitz mean-variance portfolio selection under ambiguous covariance matrix ," Papers 1610.06805, arXiv.org, revised Mar 2017.
    19. Ruf, Johannes & Xie, Kangjianan, 2020. "Impact of proportional transaction costs on systematically generated portfolios," LSE Research Online Documents on Economics 104696, London School of Economics and Political Science, LSE Library.
    20. Henry Chiu & Rama Cont, 2023. "A model‐free approach to continuous‐time finance," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 257-273, April.

    More about this item

    Keywords

    Föllmer integration; Model uncertainty; Semimartingale; Pathwise integration; Rough path; Functionally generated portfolios; Universal portfolio;
    All these keywords.

    JEL classification:

    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:28:y:2024:i:1:d:10.1007_s00780-023-00522-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.