IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1311.6187.html
   My bibliography  Save this paper

Pathwise stochastic integrals for model free finance

Author

Listed:
  • Nicolas Perkowski
  • David J. Promel

Abstract

We present two different approaches to stochastic integration in frictionless model free financial mathematics. The first one is in the spirit of It\^o's integral and based on a certain topology which is induced by the outer measure corresponding to the minimal superhedging price. The second one is based on the controlled rough path integral. We prove that every "typical price path" has a naturally associated It\^o rough path, and justify the application of the controlled rough path integral in finance by showing that it is the limit of non-anticipating Riemann sums, a new result in itself. Compared to the first approach, rough paths have the disadvantage of severely restricting the space of integrands, but the advantage of being a Banach space theory. Both approaches are based entirely on financial arguments and do not require any probabilistic structure.

Suggested Citation

  • Nicolas Perkowski & David J. Promel, 2013. "Pathwise stochastic integrals for model free finance," Papers 1311.6187, arXiv.org, revised Jun 2016.
  • Handle: RePEc:arx:papers:1311.6187
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1311.6187
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Vovk, 2012. "Continuous-time trading and the emergence of probability," Finance and Stochastics, Springer, vol. 16(4), pages 561-609, October.
    2. Kardaras, Constantinos & Platen, Eckhard, 2011. "On the semimartingale property of discounted asset-price processes," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2678-2691, November.
    3. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    4. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    5. Karandikar, Rajeeva L., 1995. "On pathwise stochastic integration," Stochastic Processes and their Applications, Elsevier, vol. 57(1), pages 11-18, May.
    6. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    7. Rosanna Coviello & Cristina Di Girolami & Francesco Russo, 2011. "On stochastic calculus related to financial assets without semimartingales," Papers 1102.2050, arXiv.org.
    8. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    9. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    10. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    2. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    3. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    4. Andrew L. Allan & Chong Liu & David J. Promel, 2021. "A C\`adl\`ag Rough Path Foundation for Robust Finance," Papers 2109.04225, arXiv.org, revised May 2023.
    5. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    6. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    7. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Pathwise superhedging on prediction sets," Finance and Stochastics, Springer, vol. 24(1), pages 215-248, January.
    8. Mathias Beiglbock & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Promel, 2015. "Pathwise super-replication via Vovk's outer measure," Papers 1504.03644, arXiv.org, revised Jul 2016.
    9. Mun-Chol Kim & Song-Chol Ryom, 2022. "Pathwise superhedging under proportional transaction costs," Mathematics and Financial Economics, Springer, volume 16, number 4, June.
    10. Mykland, Per Aslak, 2019. "Combining statistical intervals and market prices: The worst case state price distribution," Journal of Econometrics, Elsevier, vol. 212(1), pages 272-285.
    11. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    12. Jan Obloj & Johannes Wiesel, 2021. "Distributionally robust portfolio maximisation and marginal utility pricing in one period financial markets," Papers 2105.00935, arXiv.org, revised Nov 2021.
    13. Jan Obłój & Johannes Wiesel, 2021. "Distributionally robust portfolio maximization and marginal utility pricing in one period financial markets," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1454-1493, October.
    14. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2016. "Hedging with Small Uncertainty Aversion," Papers 1605.06429, arXiv.org.
    15. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    16. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    17. Daniel Krv{s}ek & Gudmund Pammer, 2024. "General duality and dual attainment for adapted transport," Papers 2401.11958, arXiv.org.
    18. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2017. "Hedging with small uncertainty aversion," Finance and Stochastics, Springer, vol. 21(1), pages 1-64, January.
    19. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    20. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2017. "Pathwise superhedging on prediction sets," Papers 1711.02764, arXiv.org, revised Oct 2019.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1311.6187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.