IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i5p721-729.html
   My bibliography  Save this article

Functional Itô calculus

Author

Listed:
  • Bruno Dupire

Abstract

We extend some results of the Itô calculus to functionals of the current path of a process to reflect the fact that often the impact of randomness is cumulative and depends on the history of the process, not merely on its current value. We express the differential of the functional in terms of adequately defined partial derivatives to obtain an Itô formula. We develop an extension of the Feynman-Kac formula to the functional case and an explicit expression of the integrand in the Martingale Representation Theorem. We establish that under certain conditions, even path dependent options prices satisfy a partial differential equation in a local sense. We exploit this fact to find an expression of the price difference between two models and compute variational derivatives with respect to the volatility surface.

Suggested Citation

  • Bruno Dupire, 2019. "Functional Itô calculus," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 721-729, May.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:5:p:721-729
    DOI: 10.1080/14697688.2019.1575974
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2019.1575974
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2019.1575974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou Fang, 2023. "Continuous-Time Path-Dependent Exploratory Mean-Variance Portfolio Construction," Papers 2303.02298, arXiv.org.
    2. Georgii Riabov & Aleh Tsyvinski, 2021. "Policy with stochastic hysteresis," Papers 2104.10225, arXiv.org.
    3. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Promel, 2021. "Model-free Portfolio Theory: A Rough Path Approach," Papers 2109.01843, arXiv.org, revised Oct 2022.
    4. Bingyan Han & Hoi Ying Wong, 2019. "Time-inconsistency with rough volatility," Papers 1907.11378, arXiv.org, revised Dec 2021.
    5. Christian Bayer & Paul Hager & Sebastian Riedel & John Schoenmakers, 2021. "Optimal stopping with signatures," Papers 2105.00778, arXiv.org.
    6. Christa Cuchiero & Janka Moller, 2023. "Signature Methods in Stochastic Portfolio Theory," Papers 2310.02322, arXiv.org, revised Oct 2024.
    7. Andrew L. Allan & Chong Liu & David J. Promel, 2021. "A C\`adl\`ag Rough Path Foundation for Robust Finance," Papers 2109.04225, arXiv.org, revised May 2023.
    8. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
    9. Bruno Bouchard & Xiaolu Tan, 2021. "A quasi-sure optional decomposition and super-hedging result on the Skorokhod space," Finance and Stochastics, Springer, vol. 25(3), pages 505-528, July.
    10. Nam, Kihun, 2021. "Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 376-411.
    11. Christian Bayer & Luca Pelizzari & John Schoenmakers, 2023. "Primal and dual optimal stopping with signatures," Papers 2312.03444, arXiv.org.
    12. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Prömel, 2023. "Model‐free portfolio theory: A rough path approach," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 709-765, July.
    13. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org, revised Jan 2025.
    14. Li, Xiaoyue & Mao, Xuerong & Song, Guoting, 2024. "An explicit approximation for super-linear stochastic functional differential equations," Stochastic Processes and their Applications, Elsevier, vol. 169(C).
    15. Alexandre Pannier, 2023. "Path-dependent PDEs for volatility derivatives," Papers 2311.08289, arXiv.org, revised Jan 2024.
    16. Kiseop Lee & Seongje Lim & Hyungbin Park, 2022. "Option pricing under path-dependent stock models," Papers 2211.10953, arXiv.org, revised Aug 2023.
    17. Brian Huge & Antoine Savine, 2020. "Differential Machine Learning," Papers 2005.02347, arXiv.org, revised Sep 2020.
    18. Cont, Rama & Kalinin, Alexander, 2020. "On the support of solutions to stochastic differential equations with path-dependent coefficients," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2639-2674.
    19. Qi Feng & Man Luo & Zhaoyu Zhang, 2021. "Deep Signature FBSDE Algorithm," Papers 2108.10504, arXiv.org, revised Aug 2022.
    20. Shreya Bose & Ibrahim Ekren, 2021. "Multidimensional Kyle-Back model with a risk averse informed trader," Papers 2111.01957, arXiv.org.
    21. Henry Chiu & Rama Cont, 2023. "A model‐free approach to continuous‐time finance," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 257-273, April.
    22. Anton Plaksin, 2020. "Minimax and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations for Time-Delay Systems," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 22-42, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:5:p:721-729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.