IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.11881.html
   My bibliography  Save this paper

Universal portfolios in continuous time: an approach in pathwise It\^o calculus

Author

Listed:
  • Xiyue Han
  • Alexander Schied

Abstract

We provide a simple and straightforward approach to a continuous-time version of Cover's universal portfolio strategies within the model-free context of F\"ollmer's pathwise It\^o calculus. We establish the existence of the universal portfolio strategy and prove that its portfolio value process is the average of all values of constant rebalanced strategies. This result relies on a systematic comparison between two alternative descriptions of self-financing trading strategies within pathwise It\^o calculus. We moreover provide a comparison result for the performance and the realized volatility and variance of constant rebalanced portfolio strategies

Suggested Citation

  • Xiyue Han & Alexander Schied, 2025. "Universal portfolios in continuous time: an approach in pathwise It\^o calculus," Papers 2504.11881, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2504.11881
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.11881
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Schied & Leo Speiser & Iryna Voloshchenko, 2016. "Model-free portfolio theory and its functional master formula," Papers 1606.03325, arXiv.org, revised May 2018.
    2. Henry Chiu & Rama Cont, 2023. "A model‐free approach to continuous‐time finance," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 257-273, April.
    3. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Prömel, 2023. "Model‐free portfolio theory: A rough path approach," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 709-765, July.
    4. Ioannis Karatzas & Donghan Kim, 2020. "Trading strategies generated pathwise by functions of market weights," Finance and Stochastics, Springer, vol. 24(2), pages 423-463, April.
    5. Bick, Avi & Willinger, Walter, 1994. "Dynamic spanning without probabilities," Stochastic Processes and their Applications, Elsevier, vol. 50(2), pages 349-374, April.
    6. Alexander Schied & Iryna Voloshchenko, 2015. "Pathwise no-arbitrage in a class of Delta hedging strategies," Papers 1511.00026, arXiv.org, revised Jun 2016.
    7. Rudi Zagst & Julia Kraus, 2011. "Stochastic dominance of portfolio insurance strategies," Annals of Operations Research, Springer, vol. 185(1), pages 75-103, May.
    8. Black, Fischer & Perold, AndreF., 1992. "Theory of constant proportion portfolio insurance," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 403-426.
    9. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    10. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew L. Allan & Chong Liu & David J. Promel, 2021. "A C\`adl\`ag Rough Path Foundation for Robust Finance," Papers 2109.04225, arXiv.org, revised May 2023.
    2. Erhan Bayraktar & Donghan Kim & Abhishek Tilva, 2024. "Quantifying dimensional change in stochastic portfolio theory," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 977-1021, July.
    3. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Promel, 2021. "Model-free Portfolio Theory: A Rough Path Approach," Papers 2109.01843, arXiv.org, revised Oct 2022.
    4. Henry Chiu & Rama Cont, 2022. "A model-free approach to continuous-time finance," Papers 2211.15531, arXiv.org.
    5. Andrew L. Allan & Chong Liu & David J. Prömel, 2024. "A càdlàg rough path foundation for robust finance," Finance and Stochastics, Springer, vol. 28(1), pages 215-257, January.
    6. Łochowski, Rafał M. & Perkowski, Nicolas & Prömel, David J., 2018. "A superhedging approach to stochastic integration," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4078-4103.
    7. Raquel M. Gaspar & Paulo M. Silva, 2023. "Investors’ perspective on portfolio insurance," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 22(1), pages 49-79, January.
    8. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    9. Sami Attaoui & Vincent Lacoste, 2013. "A scenario-based description of optimal American capital guaranteed strategies," Finance, Presses universitaires de Grenoble, vol. 34(2), pages 65-119.
    10. Donghan Kim, 2022. "Market-to-book Ratio in Stochastic Portfolio Theory," Papers 2206.03742, arXiv.org.
    11. Ben Ameur, H. & Prigent, J.L., 2014. "Portfolio insurance: Gap risk under conditional multiples," European Journal of Operational Research, Elsevier, vol. 236(1), pages 238-253.
    12. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    13. Henry Chiu, 2024. "Model-free portfolio allocation in continuous-time," Papers 2411.05470, arXiv.org, revised Mar 2025.
    14. Patrick Mijatovic, 2021. "Beating the Market with Generalized Generating Portfolios," Papers 2101.07084, arXiv.org.
    15. Raquel M. Gaspar, 2016. "On Path–dependency of Constant Proportion Portfolio Insurance strategies," EcoMod2016 9381, EcoMod.
    16. Schied, Alexander, 2014. "Model-free CPPI," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 84-94.
    17. Vladimir Vovk, 2012. "Continuous-time trading and the emergence of probability," Finance and Stochastics, Springer, vol. 16(4), pages 561-609, October.
    18. Christa Cuchiero & Walter Schachermayer & Ting-Kam Leonard Wong, 2016. "Cover's universal portfolio, stochastic portfolio theory and the numeraire portfolio," Papers 1611.09631, arXiv.org.
    19. Ruf, Johannes & Xie, Kangjianan, 2020. "Impact of proportional transaction costs on systematically generated portfolios," LSE Research Online Documents on Economics 104696, London School of Economics and Political Science, LSE Library.
    20. Zieling, Daniel & Mahayni, Antje & Balder, Sven, 2014. "Performance evaluation of optimized portfolio insurance strategies," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 212-225.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.11881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.