IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.02722.html
   My bibliography  Save this paper

Get me out of this hole: a profile likelihood approach to identifying and avoiding inferior local optima in choice models

Author

Listed:
  • Stephane Hess
  • David Bunch
  • Andrew Daly

Abstract

Choice modellers routinely acknowledge the risk of convergence to inferior local optima when using structures other than a simple linear-in-parameters logit model. At the same time, there is no consensus on appropriate mechanisms for addressing this issue. Most analysts seem to ignore the problem, while others try a set of different starting values, or put their faith in what they believe to be more robust estimation approaches. This paper puts forward the use of a profile likelihood approach that systematically analyses the parameter space around an initial maximum likelihood estimate and tests for the existence of better local optima in that space. We extend this to an iterative algorithm which then progressively searches for the best local optimum under given settings for the algorithm. Using a well known stated choice dataset, we show how the approach identifies better local optima for both latent class and mixed logit, with the potential for substantially different policy implications. In the case studies we conduct, an added benefit of the approach is that the new solutions exhibit properties that more closely adhere to the property of asymptotic normality, also highlighting the benefits of the approach in analysing the statistical properties of a solution.

Suggested Citation

  • Stephane Hess & David Bunch & Andrew Daly, 2025. "Get me out of this hole: a profile likelihood approach to identifying and avoiding inferior local optima in choice models," Papers 2506.02722, arXiv.org.
  • Handle: RePEc:arx:papers:2506.02722
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.02722
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.02722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.