IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.23025.html
   My bibliography  Save this paper

Learning to Regulate: A New Event-Level Dataset of Capital Control Measures

Author

Listed:
  • Geyue Sun
  • Xiao Liu
  • Tomas Williams
  • Roberto Samaniego

Abstract

We construct a novel event-level Capital Control Measures (CCM) dataset covering 196 countries from 1999 to 2023 by leveraging prompt-based large language models (LLMs). The dataset enables event study analysis and cross-country comparisons based on rich policy attributes, including action type, intensity, direction, implementing entity, and other multidimensional characteristics. Using a two-step prompt framework with GPT-4.1, we extract structured information from the IMF's Annual Report on Exchange Arrangements and Exchange Restrictions (AREAER), resulting in 5,198 capital control events with 27 annotated fields and corresponding model reasoning. Secondly, to facilitate real-time classification and extension to external sources, we fine-tune an open-source Meta Llama 3.1-8B model, named CCM-Llama, trained on AREAER change logs and final status reports. The model achieves 90.09\% accuracy in category classification and 99.55\% in status prediction. Finally, we apply the CCM dataset in an empirical application: an event study on China, Australia, and the US. The results show that inward capital control measures significantly reduce fund inflows within one month, and restrictive policies tend to have stronger effects than liberalizing ones, with notable heterogeneity across countries. Our work contributes to the growing literature on the use of LLMs in economics by providing both a novel high-frequency policy dataset and a replicable framework for automated classification of capital control events from diverse and evolving information sources.

Suggested Citation

  • Geyue Sun & Xiao Liu & Tomas Williams & Roberto Samaniego, 2025. "Learning to Regulate: A New Event-Level Dataset of Capital Control Measures," Papers 2505.23025, arXiv.org.
  • Handle: RePEc:arx:papers:2505.23025
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.23025
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.23025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.