Machine learning the first stage in 2SLS: Practical guidance from bias decomposition and simulation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006.
"Understanding Instrumental Variables in Models with Essential Heterogeneity,"
The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
- Heckman, James J. & Urzua, Sergio & Vytlacil, Edward, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," IZA Discussion Papers 2320, Institute of Labor Economics (IZA).
- James J. Heckman & Sergio Urzua & Edward J. Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," NBER Working Papers 12574, National Bureau of Economic Research, Inc.
- James J. Heckman & Sergio Urzua & Edward Vytlacil, 2009. "Understanding Instrumental Variables in Models with Essential Heterogeneity," Working Papers 200941, Geary Institute, University College Dublin.
- Joshua D. Angrist & Alan B. Krueger, 2001.
"Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments,"
Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 69-85, Fall.
- Joshua Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," NBER Working Papers 8456, National Bureau of Economic Research, Inc.
- Joshua D. Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Working Papers 834, Princeton University, Department of Economics, Industrial Relations Section..
- David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2022.
"Valid t-Ratio Inference for IV,"
American Economic Review, American Economic Association, vol. 112(10), pages 3260-3290, October.
- David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2020. "Valid t-ratio Inference for IV," Papers 2010.05058, arXiv.org.
- David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack R. Porter, 2021. "Valid t-ratio Inference for IV," Working Papers 2021-69, Princeton University. Economics Department..
- David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack R. Porter, 2021. "Valid t-ratio Inference for IV," NBER Working Papers 29124, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Carrasco, Marine & Tchuente, Guy, 2015.
"Regularized LIML for many instruments,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
- Guy Tchuente & Marine Carrasco, 2013. "Regularized LIML for many instruments," CIRANO Working Papers 2013s-20, CIRANO.
- Marine Carrasco & Guy Tchuente, 2015. "Regularized LIML for many instruments," Studies in Economics 1515, School of Economics, University of Kent.
- James J. Heckman & Edward Vytlacil, 2005.
"Structural Equations, Treatment Effects, and Econometric Policy Evaluation,"
Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
- James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects and Econometric Policy Evaluation," NBER Working Papers 11259, National Bureau of Economic Research, Inc.
- James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects and Econometric Policy Evaluation," NBER Technical Working Papers 0306, National Bureau of Economic Research, Inc.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Ng Serena & Bai Jushan, 2009. "Selecting Instrumental Variables in a Data Rich Environment," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-34, April.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015.
"Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Papers 1501.03430, arXiv.org, revised Aug 2015.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "Valid post-selection and post-regularization inference: An elementary, general approach," CeMMAP working papers CWP36/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "Valid post-selection and post-regularization inference: An elementary, general approach," CeMMAP working papers 36/16, Institute for Fiscal Studies.
- Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
- Daniel A. Ackerberg & Paul J. Devereux, 2009.
"Improved JIVE Estimators for Overidentified Linear Models with and without Heteroskedasticity,"
The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 351-362, May.
- Daniel A. Ackerberg & Paul J. Devereux, 2008. "Improved Jive Estimators for Overidentified Linear Models with and without Heteroskedasticity," Working Papers 200817, School of Economics, University College Dublin.
- Ackerberg, Daniel & Devereux, Paul J., 2008. "Improved JIVE Estimators for Overidentified Linear Models with and without Heteroskedasticity," CEPR Discussion Papers 6926, C.E.P.R. Discussion Papers.
- Jeffrey M Wooldridge, 2010.
"Econometric Analysis of Cross Section and Panel Data,"
MIT Press Books,
The MIT Press,
edition 2, volume 1, number 0262232588, December.
- Jeffrey M. Wooldridge, 2001. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262232197, December.
- Biewen, Martin & Kugler, Philipp, 2021.
"Two-stage least squares random forests with an application to Angrist and Evans (1998),"
Economics Letters, Elsevier, vol. 204(C).
- Biewen, Martin & Kugler, Philipp, 2020. "Two-Stage Least Squares Random Forests with an Application to Angrist and Evans (1998)," IZA Discussion Papers 13613, Institute of Labor Economics (IZA).
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
- Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-235, April.
- Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
- Winkelried, D. & Smith, R.J., 2011. "Principal Components Instrumental Variable Estimation," Cambridge Working Papers in Economics 1119, Faculty of Economics, University of Cambridge.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
- Joshua Angrist & Alan Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Working Papers 834, Princeton University, Department of Economics, Industrial Relations Section..
- Angrist, J D & Imbens, G W & Krueger, A B, 1999.
"Jackknife Instrumental Variables Estimation,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
- Joshua D. Angrist & Guido W. Imbens & Alan Krueger, 1995. "Jackknife Instrumental Variables Estimation," NBER Technical Working Papers 0172, National Bureau of Economic Research, Inc.
- Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008.
"Estimation With Many Instrumental Variables,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
- Christian Hansen & Jerry Hausman & Whitney K. Newey, 2006. "Estimation with many instrumental variables," CeMMAP working papers CWP19/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ellora Derenoncourt, 2022. "Can You Move to Opportunity? Evidence from the Great Migration," American Economic Review, American Economic Association, vol. 112(2), pages 369-408, February.
- repec:fth:prinin:455 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luis Antonio Fantozzi Alvarez & Rodrigo Toneto, 2024. "The interpretation of 2SLS with a continuous instrument: a weighted LATE representation," Working Papers, Department of Economics 2024_11, University of São Paulo (FEA-USP).
- Mogstad, Magne & Torgovitsky, Alexander, 2024. "Instrumental variables with unobserved heterogeneity in treatment effects," Handbook of Labor Economics,, Elsevier.
- Alvarez, Luis A.F. & Toneto, Rodrigo, 2024. "The interpretation of 2SLS with a continuous instrument: A weighted LATE representation," Economics Letters, Elsevier, vol. 237(C).
- Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
- Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2010. "LASSO Methods for Gaussian Instrumental Variables Models," Papers 1012.1297, arXiv.org, revised Feb 2011.
- Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Michal Kolesár, 2013. "Estimation in an Instrumental Variables Model With Treatment Effect Heterogeneity," Working Papers 2013-2, Princeton University. Economics Department..
- Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
- Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
- Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
- Marine Carrasco & Guy Tchuente, 2016.
"Efficient Estimation with Many Weak Instruments Using Regularization Techniques,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1609-1637, December.
- Guy Tchuente & Marine Carrasco, 2013. "Efficient estimation with many weak instruments using regularization techniques," CIRANO Working Papers 2013s-21, CIRANO.
- Marine Carrasco & Guy Tchuente, 2015. "Efficient estimation with many weak instruments using regularization techniques," Studies in Economics 1517, School of Economics, University of Kent.
- Matthias Westphal & Daniel A Kamhöfer & Hendrik Schmitz, 2022.
"Marginal College Wage Premiums Under Selection Into Employment,"
The Economic Journal, Royal Economic Society, vol. 132(646), pages 2231-2272.
- Westphal, Matthias & Kamhöfer, Daniel A. & Schmitz, Hendrik, 2020. "Marginal college wage premiums under selection into employment," DICE Discussion Papers 341, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
- Westphal, Matthias & Kamhöfer, Daniel A. & Schmitz, Hendrik, 2020. "Marginal College Wage Premiums under Selection into Employment," IZA Discussion Papers 13382, Institute of Labor Economics (IZA).
- Matthias Westphal & Daniel A. Kamhöfer & Hendrik Schmitz, 2020. "Marginal College Wage Premiums under Selection into Employment," Working Papers CIE 133, Paderborn University, CIE Center for International Economics.
- Westphal, Matthias & Kamhöfer, Daniel A. & Schmitz, Hendrik, 2020. "Marginal college wage premiums under selection into employment," Ruhr Economic Papers 855, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Tom Boot & Didier Nibbering, 2024. "Inference on LATEs with covariates," Papers 2402.12607, arXiv.org, revised Nov 2024.
- Victor Chernozhukov & Ivan Fernandez-Val & Chen Huang & Weining Wang, 2024.
"Arellano-bond lasso estimator for dynamic linear panel models,"
CeMMAP working papers
09/24, Institute for Fiscal Studies.
- Victor Chernozhukov & Iv'an Fern'andez-Val & Chen Huang & Weining Wang, 2024. "Arellano-Bond LASSO Estimator for Dynamic Linear Panel Models," Papers 2402.00584, arXiv.org, revised Oct 2024.
- Eric Gautier & Christiern Rose, 2022. "Fast, Robust Inference for Linear Instrumental Variables Models using Self-Normalized Moments," Papers 2211.02249, arXiv.org, revised Nov 2022.
- Michael T. French & Ioana Popovici, 2011. "That instrument is lousy! In search of agreement when using instrumental variables estimation in substance use research," Health Economics, John Wiley & Sons, Ltd., vol. 20(2), pages 127-146, February.
- Abadie, Alberto & Gu, Jiaying & Shen, Shu, 2024. "Instrumental variable estimation with first-stage heterogeneity," Journal of Econometrics, Elsevier, vol. 240(2).
- Thomas Wiemann, 2023. "Optimal Categorical Instrumental Variables," Papers 2311.17021, arXiv.org, revised May 2024.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.13422. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.