Tracking the Hidden Forces Behind Laos' 2022 Exchange Rate Crisis and Balance of Payments Instability
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014.
"Dynamic factor models: A review of the literature,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
- Barhoumi, K. & Darn , O. & Ferrara, L., 2013. "Dynamic Factor Models: A review of the Literature ," Working papers 430, Banque de France.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2013. "Dynamic factor models: A review of the literature," Post-Print hal-01385974, HAL.
- Forni, Mario & Lippi, Marco, 2001.
"The Generalized Dynamic Factor Model: Representation Theory,"
Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
- Lippi, Marco & Forni, Mario, 2000. "The Generalized Dynamic Factor Model: Representation Theory," CEPR Discussion Papers 2509, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
- Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021.
"Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
- Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Hallin, Marc, 2020. "Robustness and the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Textos para discussão 521, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Carlos Cesar Trucios-Maza & João H. G Mazzeu & Luis K. Hotta & Pedro L. Valls Pereira & Marc Hallin, 2019. "On the robustness of the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Working Papers ECARES 2019-32, ULB -- Universite Libre de Bruxelles.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Luciani, Matteo, 2014.
"Forecasting with approximate dynamic factor models: The role of non-pervasive shocks,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
- Matteo Luciani, 2011. "Forecasting with Approximate Dynamic Factor Models: the Role of Non-Pervasive Shocks," Working Papers ECARES ECARES 2011‐022, ULB -- Universite Libre de Bruxelles.
- Eickmeier, Sandra & Ng, Tim, 2011.
"Forecasting national activity using lots of international predictors: An application to New Zealand,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
- Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511.
- Sandra Eickmeier & Tim Ng, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/04, Reserve Bank of New Zealand.
- Eickmeier, Sandra & Ng, Tim, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Discussion Paper Series 1: Economic Studies 2009,11, Deutsche Bundesbank.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Ngai Hang Chan & Ye Lu & Chun Yip Yau, 2017. "Factor Modelling for High-Dimensional Time Series: Inference and Model Selection," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 285-307, March.
- Gorodnichenko, Yuriy & Ng, Serena, 2017.
"Level and volatility factors in macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 91(C), pages 52-68.
- Yuriy Gorodnichenko & Serena Ng, 2017. "Level and Volatility Factors in Macroeconomic Data," NBER Working Papers 23672, National Bureau of Economic Research, Inc.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008.
"Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
- Helmut Lütkepohl, 2014.
"Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey,"
Discussion Papers of DIW Berlin
1351, DIW Berlin, German Institute for Economic Research.
- Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Kaufmann, Sylvia & Schumacher, Christian, 2019. "Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification," Journal of Econometrics, Elsevier, vol. 210(1), pages 116-134.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Abberger, Klaus & Graff, Michael & Siliverstovs, Boriss & Sturm, Jan-Egbert, 2018. "Using rule-based updating procedures to improve the performance of composite indicators," Economic Modelling, Elsevier, vol. 68(C), pages 127-144.
- Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021.
"Augmented factor models with applications to validating market risk factors and forecasting bond risk premia,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
- Jianqing Fan & Yuan Ke & Yuan Liao, 2016. "Augmented Factor Models with Applications to Validating Market Risk Factors and Forecasting Bond Risk Premia," Papers 1603.07041, arXiv.org, revised Sep 2018.
- Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
- Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021.
"Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.
- Alessandro Giovannelli & Tommaso Proietti & Ambra Citton & Ottavio Ricchi & Cristian Tegami & Cristina Tinti, 2020. "Nowcasting GDP and its Components in a Data-rich Environment: the Merits of the Indirect Approach," CEIS Research Paper 489, Tor Vergata University, CEIS, revised 30 May 2020.
- Tomohiro Ando & Ruey S. Tsay, 2009.
"Model selection for generalized linear models with factor‐augmented predictors,"
Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 207-235, May.
- T. Ando & R. S. Tsay, 2009. "‘Model selection for generalized linear models with factor‐augmented predictors’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 243-246, May.
- Michał Brzoza-Brzezina & Jacek Kotłowski, 2009. "Bezwzględna stopa inflacji w gospodarce polskiej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 9, pages 1-21.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.13308. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.