IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.09637.html
   My bibliography  Save this paper

Complementarity, Augmentation, or Substitutivity? The Impact of Generative Artificial Intelligence on the U.S. Federal Workforce

Author

Listed:
  • William G. Resh
  • Yi Ming
  • Xinyao Xia
  • Michael Overton
  • Gul Nisa Gurbuz
  • Brandon De Breuhl

Abstract

This study investigates the near-future impacts of generative artificial intelligence (AI) technologies on occupational competencies across the U.S. federal workforce. We develop a multi-stage Retrieval-Augmented Generation system to leverage large language models for predictive AI modeling that projects shifts in required competencies and to identify vulnerable occupations on a knowledge-by-skill-by-ability basis across the federal government workforce. This study highlights policy recommendations essential for workforce planning in the era of AI. We integrate several sources of detailed data on occupational requirements across the federal government from both centralized and decentralized human resource sources, including from the U.S. Office of Personnel Management (OPM) and various federal agencies. While our preliminary findings suggest some significant shifts in required competencies and potential vulnerability of certain roles to AI-driven changes, we provide nuanced insights that support arguments against abrupt or generic approaches to strategic human capital planning around the development of generative AI. The study aims to inform strategic workforce planning and policy development within federal agencies and demonstrates how this approach can be replicated across other large employment institutions and labor markets.

Suggested Citation

  • William G. Resh & Yi Ming & Xinyao Xia & Michael Overton & Gul Nisa Gurbuz & Brandon De Breuhl, 2025. "Complementarity, Augmentation, or Substitutivity? The Impact of Generative Artificial Intelligence on the U.S. Federal Workforce," Papers 2503.09637, arXiv.org.
  • Handle: RePEc:arx:papers:2503.09637
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.09637
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erik Brynjolfsson & Danielle Li & Lindsey Raymond, 2023. "Generative AI at Work," Papers 2304.11771, arXiv.org, revised Nov 2024.
    2. Edward W. Felten & Manav Raj & Robert Seamans, 2018. "A Method to Link Advances in Artificial Intelligence to Occupational Abilities," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 54-57, May.
    3. Erik Brynjolfsson & Daniel Rock & Chad Syverson, 2018. "Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 23-57, National Bureau of Economic Research, Inc.
    4. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1, October.
    5. Edward Felten & Manav Raj & Robert Seamans, 2021. "Occupational, industry, and geographic exposure to artificial intelligence: A novel dataset and its potential uses," Strategic Management Journal, Wiley Blackwell, vol. 42(12), pages 2195-2217, December.
    6. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    2. Dario Guarascio & Jelena Reljic & Roman Stollinger, 2023. "Artificial Intelligence and Employment: A Look into the Crystal Ball," LEM Papers Series 2023/34, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Fossen, Frank M. & McLemore, Trevor & Sorgner, Alina, 2024. "Artificial Intelligence and Entrepreneurship," IZA Discussion Papers 17055, Institute of Labor Economics (IZA).
    4. Jin Liu & Xingchen Xu & Xi Nan & Yongjun Li & Yong Tan, 2023. ""Generate" the Future of Work through AI: Empirical Evidence from Online Labor Markets," Papers 2308.05201, arXiv.org, revised Jun 2024.
    5. Jason Furman & Robert Seamans, 2019. "AI and the Economy," Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 161-191.
    6. Fossen, Frank M. & Sorgner, Alina, 2019. "New Digital Technologies and Heterogeneous Employment and Wage Dynamics in the United States: Evidence from Individual-Level Data," IZA Discussion Papers 12242, Institute of Labor Economics (IZA).
    7. Antonio Dalla Zuanna & Davide Dottori & Elena Gentili & Salvatore Lattanzio, 2024. "An assessment of occupational exposure to artificial intelligence in Italy," Questioni di Economia e Finanza (Occasional Papers) 878, Bank of Italy, Economic Research and International Relations Area.
    8. Pablo Casas & Concepción Román, 2024. "The impact of artificial intelligence in the early retirement decision," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 51(3), pages 583-618, August.
    9. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    10. David Marguerit, 2025. "Augmenting or Automating Labor? The Effect of AI Development on New Work, Employment, and Wages," Papers 2503.19159, arXiv.org.
    11. Moshe A. Barach & Aseem Kaul & Ming D. Leung & Sibo Lu, 2019. "Strategic Redundancy in the Use of Big Data: Evidence from a Two-Sided Labor Market," Strategy Science, INFORMS, vol. 4(4), pages 298-322, December.
    12. Christian Rammer & Gastón P Fernández & Dirk Czarnitzki, 2021. "Artificial Intelligence and Industrial Innovation: Evidence from Firm-Level Data," Working Papers of Department of Economics, Leuven 674605, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    13. Christoph Riedl & Eric Bogert, 2024. "Effects of AI Feedback on Learning, the Skill Gap, and Intellectual Diversity," Papers 2409.18660, arXiv.org.
    14. Ekaterina Prytkova, 2021. "ICT's Wide Web: a System-Level Analysis of ICT's Industrial Diffusion with Algorithmic Links," Jena Economics Research Papers 2021-005, Friedrich-Schiller-University Jena.
    15. Kristina McElheran & J. Frank Li & Erik Brynjolfsson & Zachary Kroff & Emin Dinlersoz & Lucia Foster & Nikolas Zolas, 2024. "AI adoption in America: Who, what, and where," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 375-415, March.
    16. Alexander Cuntz & Carsten Fink & Hansueli Stamm, 2024. "Artificial Intelligence and Intellectual Property : An Economic Perspective," WIPO Economic Research Working Papers 77, World Intellectual Property Organization - Economics and Statistics Division.
    17. Gries, Thomas & Naudé, Wim, 2022. "Modelling artificial intelligence in economics," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 56, pages 1-12.
    18. Fossen, Frank M. & Sorgner, Alina, 2021. "Digitalization of work and entry into entrepreneurship," Journal of Business Research, Elsevier, vol. 125(C), pages 548-563.
    19. Mario Benassi & Elena Grinza & Francesco Rentocchini & Laura Rondi, 2022. "Patenting in 4IR technologies and firm performance [Robots and jobs: evidence from US labor markets]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(1), pages 112-136.
    20. Seamus McGuinness & Konstantinos Pouliakas & Paul Redmond, 2023. "Skills-displacing technological change and its impact on jobs: challenging technological alarmism?," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 32(3), pages 370-392, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.09637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.