IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.19075.html
   My bibliography  Save this paper

Incomplete Information Robustness

Author

Listed:
  • Stephen Morris
  • Takashi Ui

Abstract

Consider an analyst who models a strategic situation using an incomplete information game. The true game may involve correlated, duplicated belief hierarchies, but the analyst lacks knowledge of the correlation structure and can only approximate each belief hierarchy. To make predictions in this setting, the analyst uses belief-invariant Bayes correlated equilibria (BIBCE) and seeks to determine which one is justifiable. We address this question by introducing the notion of robustness: a BIBCE is robust if, for every nearby incomplete information game, there exists a BIBCE close to it. Our main result provides a sufficient condition for robustness using a generalized potential function. In a supermodular potential game, a robust BIBCE is a Bayes Nash equilibrium, whereas this need not hold in other classes of games.

Suggested Citation

  • Stephen Morris & Takashi Ui, 2025. "Incomplete Information Robustness," Papers 2502.19075, arXiv.org, revised Feb 2025.
  • Handle: RePEc:arx:papers:2502.19075
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.19075
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ui, Takashi, 2001. "Robust Equilibria of Potential Games," Econometrica, Econometric Society, vol. 69(5), pages 1373-1380, September.
    2. Françoise Forges, 2006. "Correlated Equilibrium in Games with Incomplete Information Revisited," Theory and Decision, Springer, vol. 61(4), pages 329-344, December.
    3. Bergemann, Dirk & Morris, Stephen, 2016. "Bayes correlated equilibrium and the comparison of information structures in games," Theoretical Economics, Econometric Society, vol. 11(2), May.
    4. Atsushi Kajii & Stephen Morris, 1997. "The Robustness of Equilibria to Incomplete Information," Econometrica, Econometric Society, vol. 65(6), pages 1283-1310, November.
    5. Dirk Bergemann & Stephen Morris, 2019. "Information Design: A Unified Perspective," Journal of Economic Literature, American Economic Association, vol. 57(1), pages 44-95, March.
    6. Pram, Kym, 2019. "On the equivalence of robustness to canonical and general elaborations," Journal of Economic Theory, Elsevier, vol. 180(C), pages 1-10.
    7. Dirk Bergemann & Stephen Morris, 2013. "Robust Predictions in Games With Incomplete Information," Econometrica, Econometric Society, vol. 81(4), pages 1251-1308, July.
    8. Atsushi Kajii & Stephen Morris, 2020. "Correction to: Notes on “refinements and higher order beliefs”," The Japanese Economic Review, Springer, vol. 71(2), pages 353-354, April.
    9. Carlsson, Hans & van Damme, Eric, 1993. "Global Games and Equilibrium Selection," Econometrica, Econometric Society, vol. 61(5), pages 989-1018, September.
    10. , C. & ,, 2006. "Hierarchies of belief and interim rationalizability," Theoretical Economics, Econometric Society, vol. 1(1), pages 19-65, March.
    11. Morris, Stephen & Ui, Takashi, 2005. "Generalized potentials and robust sets of equilibria," Journal of Economic Theory, Elsevier, vol. 124(1), pages 45-78, September.
    12. Atsushi Kajii & Stephen Morris, 2020. "Refinements and higher-order beliefs: a unified survey," The Japanese Economic Review, Springer, vol. 71(1), pages 7-34, January.
    13. Liu, Qingmin, 2015. "Correlation and common priors in games with incomplete information," Journal of Economic Theory, Elsevier, vol. 157(C), pages 49-75.
    14. , & , & ,, 2007. "Interim correlated rationalizability," Theoretical Economics, Econometric Society, vol. 2(1), pages 15-40, March.
    15. Bergemann, Dirk & Morris, Stephen, 2017. "Belief-free rationalizability and informational robustness," Games and Economic Behavior, Elsevier, vol. 104(C), pages 744-759.
    16. MERTENS, Jean-François & ZAMIR, Shmuel, 1985. "Formulation of Bayesian analysis for games with incomplete information," LIDAM Reprints CORE 608, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Atsushi Kajii & Stephen Morris, 2020. "Notes on “refinements and higher order beliefs”," The Japanese Economic Review, Springer, vol. 71(1), pages 35-41, January.
    18. Satoru Takahashi, 2020. "Non-equivalence between all and canonical elaborations," The Japanese Economic Review, Springer, vol. 71(1), pages 43-57, January.
    19. Daisuke Oyama & Satoru Takahashi, 2020. "Generalized Belief Operator and Robustness in Binary‐Action Supermodular Games," Econometrica, Econometric Society, vol. 88(2), pages 693-726, March.
    20. Rubinstein, Ariel, 1989. "The Electronic Mail Game: Strategic Behavior under "Almost Common Knowledge."," American Economic Review, American Economic Association, vol. 79(3), pages 385-391, June.
    21. Lehrer, Ehud & Rosenberg, Dinah & Shmaya, Eran, 2010. "Signaling and mediation in games with common interests," Games and Economic Behavior, Elsevier, vol. 68(2), pages 670-682, March.
    22. FORGES , Françoise, 1993. "Five Legitimate Definitions of Correlated Equilibrium in Games with Incomplete Information," LIDAM Discussion Papers CORE 1993009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    23. repec:cwl:cwldpp:1821rrr is not listed on IDEAS
    24. Atsushi Kajii & Stephen Morris, 2020. "Correction to: Refinements and higher-order beliefs: a unified survey," The Japanese Economic Review, Springer, vol. 71(2), pages 351-351, April.
    25. repec:dau:papers:123456789/157 is not listed on IDEAS
    26. Stephen Morris & Daisuke Oyama & Satoru Takahashi, 2024. "Implementation via Information Design in Binary‐Action Supermodular Games," Econometrica, Econometric Society, vol. 92(3), pages 775-813, May.
    27. Paul R. Milgrom & Robert J. Weber, 1985. "Distributional Strategies for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 619-632, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takashi Ui & Stephen Morris, 2020. "Incomplete Information Robustness," Working Papers on Central Bank Communication 019, University of Tokyo, Graduate School of Economics.
    2. Takahashi, Satoru & Tercieux, Olivier, 2020. "Robust equilibrium outcomes in sequential games under almost common certainty of payoffs," Journal of Economic Theory, Elsevier, vol. 188(C).
    3. Bergemann, Dirk & Morris, Stephen, 2017. "Belief-free rationalizability and informational robustness," Games and Economic Behavior, Elsevier, vol. 104(C), pages 744-759.
    4. Tang, Qianfeng, 2015. "Hierarchies of beliefs and the belief-invariant Bayesian solution," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 111-116.
    5. Dirk Bergemann & Stephen Morris, 2019. "Information Design: A Unified Perspective," Journal of Economic Literature, American Economic Association, vol. 57(1), pages 44-95, March.
    6. Tang, Qianfeng, 2015. "Interim partially correlated rationalizability," Games and Economic Behavior, Elsevier, vol. 91(C), pages 36-44.
    7. Atsushi Kajii & Stephen Morris, 2020. "Notes on “refinements and higher order beliefs”," The Japanese Economic Review, Springer, vol. 71(1), pages 35-41, January.
    8. Pram, Kym, 2019. "On the equivalence of robustness to canonical and general elaborations," Journal of Economic Theory, Elsevier, vol. 180(C), pages 1-10.
    9. Kota Murayama, 2020. "Robust predictions under finite depth of reasoning," The Japanese Economic Review, Springer, vol. 71(1), pages 59-84, January.
    10. Daisuke Oyama & Satoru Takahashi, 2020. "Generalized Belief Operator and Robustness in Binary‐Action Supermodular Games," Econometrica, Econometric Society, vol. 88(2), pages 693-726, March.
    11. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    12. Kota Murayama, 2015. "Robust Predictions under Finite Depth of Reasoning," Discussion Paper Series DP2015-28, Research Institute for Economics & Business Administration, Kobe University.
    13. Stephen Morris & Daisuke Oyama & Satoru Takahashi, 2023. "Strict robustness to incomplete information," The Japanese Economic Review, Springer, vol. 74(3), pages 357-376, July.
    14. Ziegler, Gabriel, 2022. "Informational robustness of common belief in rationality," Games and Economic Behavior, Elsevier, vol. 132(C), pages 592-597.
    15. Oyama, Daisuke & Tercieux, Olivier, 2010. "Robust equilibria under non-common priors," Journal of Economic Theory, Elsevier, vol. 145(2), pages 752-784, March.
    16. Liu, Qingmin, 2015. "Correlation and common priors in games with incomplete information," Journal of Economic Theory, Elsevier, vol. 157(C), pages 49-75.
    17. Bergemann, Dirk & Morris, Stephen, 2016. "Bayes correlated equilibrium and the comparison of information structures in games," Theoretical Economics, Econometric Society, vol. 11(2), May.
    18. Mathevet, Laurent & Taneva, Ina, 2020. "Organized Information Transmission," MPRA Paper 104302, University Library of Munich, Germany.
    19. Lehrer, Ehud & Rosenberg, Dinah & Shmaya, Eran, 2013. "Garbling of signals and outcome equivalence," Games and Economic Behavior, Elsevier, vol. 81(C), pages 179-191.
    20. Jonathan Weinstein & Muhamet Yildiz, 2004. "Finite-Order Implications of Any Equilibrium," Levine's Working Paper Archive 122247000000000065, David K. Levine.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.19075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.