IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1904.08459.html
   My bibliography  Save this paper

Stock Forecasting using M-Band Wavelet-Based SVR and RNN-LSTMs Models

Author

Listed:
  • Hieu Quang Nguyen
  • Abdul Hasib Rahimyar
  • Xiaodi Wang

Abstract

The task of predicting future stock values has always been one that is heavily desired albeit very difficult. This difficulty arises from stocks with non-stationary behavior, and without any explicit form. Hence, predictions are best made through analysis of financial stock data. To handle big data sets, current convention involves the use of the Moving Average. However, by utilizing the Wavelet Transform in place of the Moving Average to denoise stock signals, financial data can be smoothened and more accurately broken down. This newly transformed, denoised, and more stable stock data can be followed up by non-parametric statistical methods, such as Support Vector Regression (SVR) and Recurrent Neural Network (RNN) based Long Short-Term Memory (LSTM) networks to predict future stock prices. Through the implementation of these methods, one is left with a more accurate stock forecast, and in turn, increased profits.

Suggested Citation

  • Hieu Quang Nguyen & Abdul Hasib Rahimyar & Xiaodi Wang, 2019. "Stock Forecasting using M-Band Wavelet-Based SVR and RNN-LSTMs Models," Papers 1904.08459, arXiv.org.
  • Handle: RePEc:arx:papers:1904.08459
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1904.08459
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    2. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    3. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    4. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    5. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    2. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    3. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    4. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    5. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    6. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    7. Benzoni, Luca & Collin-Dufresne, Pierre & Goldstein, Robert S., 2011. "Explaining asset pricing puzzles associated with the 1987 market crash," Journal of Financial Economics, Elsevier, vol. 101(3), pages 552-573, September.
    8. Lu, Junwen & Qu, Zhongjun, 2021. "Sieve estimation of option-implied state price density," Journal of Econometrics, Elsevier, vol. 224(1), pages 88-112.
    9. Tim Bollerslev & Viktor Todorov, 2011. "Tails, Fears, and Risk Premia," Journal of Finance, American Finance Association, vol. 66(6), pages 2165-2211, December.
    10. Bugge, Sebastian A. & Guttormsen, Haakon J. & Molnár, Peter & Ringdal, Martin, 2016. "Implied volatility index for the Norwegian equity market," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 133-141.
    11. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    12. He, Xin-Jiang & Zhu, Song-Ping, 2017. "How should a local regime-switching model be calibrated?," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 149-163.
    13. Pierre Collin-Dufresne & Robert S. Goldstein & Fan Yang, 2010. "On the Relative Pricing of long Maturity S&P 500 Index Options and CDX Tranches," NBER Working Papers 15734, National Bureau of Economic Research, Inc.
    14. Shaliastovich, Ivan, 2015. "Learning, confidence, and option prices," Journal of Econometrics, Elsevier, vol. 187(1), pages 18-42.
    15. Almeida, Caio & Vicente, José, 2009. "Are interest rate options important for the assessment of interest rate risk?," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1376-1387, August.
    16. Chin‐Ho Chen, 2021. "Investor sentiment, misreaction, and the skewness‐return relationship," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(9), pages 1427-1455, September.
    17. Xin‐Jiang He & Song‐Ping Zhu, 2018. "On full calibration of hybrid local volatility and regime‐switching models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 586-606, May.
    18. Gurdip Bakshi & Charles Cao & Zhaodong (Ken) Zhong, 2021. "Assessing models of individual equity option prices," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 1-28, July.
    19. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    20. Bollerslev, Tim & Todorov, Viktor, 2014. "Time-varying jump tails," Journal of Econometrics, Elsevier, vol. 183(2), pages 168-180.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1904.08459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.