IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1706.09763.html
   My bibliography  Save this paper

Dynamical selection of Nash equilibria using Experience Weighted Attraction Learning: emergence of heterogeneous mixed equilibria

Author

Listed:
  • Robin Nicole
  • Peter Sollich

Abstract

We study the distribution of strategies in a large game that models how agents choose among different double auction markets. We classify the possible mean field Nash equilibria, which include potentially segregated states where an agent population can split into subpopulations adopting different strategies. As the game is aggregative, the actual equilibrium strategy distributions remain undetermined, however. We therefore compare with the results of Experience-Weighted Attraction (EWA) learning, which at long times leads to Nash equilibria in the appropriate limits of large intensity of choice, low noise (long agent memory) and perfect imputation of missing scores (fictitious play). The learning dynamics breaks the indeterminacy of the Nash equilibria. Non-trivially, depending on how the relevant limits are taken, more than one type of equilibrium can be selected. These include the standard homogeneous mixed and heterogeneous pure states, but also \emph{heterogeneous mixed} states where different agents play different strategies that are not all pure. The analysis of the EWA learning involves Fokker-Planck modeling combined with large deviation methods. The theoretical results are confirmed by multi-agent simulations.

Suggested Citation

  • Robin Nicole & Peter Sollich, 2017. "Dynamical selection of Nash equilibria using Experience Weighted Attraction Learning: emergence of heterogeneous mixed equilibria," Papers 1706.09763, arXiv.org.
  • Handle: RePEc:arx:papers:1706.09763
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1706.09763
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Glenn Ellison & Drew Fudenberg, 2003. "Knife-Edge or Plateau: When Do Market Models Tip?," The Quarterly Journal of Economics, Oxford University Press, vol. 118(4), pages 1249-1278.
    2. Guilherme Carmona, 2004. "Nash equilibria of games with a continuum of players," FEUNL Working Paper Series wp466, Universidade Nova de Lisboa, Faculdade de Economia.
    3. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    4. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    5. Cabral, Luis M. B., 1988. "Asymmetric equilibria in symmetric games with many players," Economics Letters, Elsevier, vol. 27(3), pages 205-208.
    6. Aleksandra Alorić & Peter Sollich & Peter McBurney & Tobias Galla, 2016. "Emergence of Cooperative Long-Term Market Loyalty in Double Auction Markets," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-26, April.
    7. Guilherme Carmona, 2003. "Nash and Limit Equilibria of Games with a Continuum of Players," Game Theory and Information 0311004, University Library of Munich, Germany.
    8. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945.
    9. Rath, Kali P, 1992. "A Direct Proof of the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(3), pages 427-433, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robin Nicole & Peter Sollich, 2018. "Dynamical selection of Nash equilibria using reinforcement learning: Emergence of heterogeneous mixed equilibria," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-37, July.
    2. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    3. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    4. Robin Nicole & Aleksandra Alori'c & Peter Sollich, 2020. "Fragmentation in trader preferences among multiple markets: Market coexistence versus single market dominance," Papers 2012.04103, arXiv.org, revised Aug 2021.
    5. Carlos Alós-Ferrer & Georg Kirchsteiger & Markus Walzl, 2010. "On the Evolution of Market Institutions: The Platform Design Paradox," Economic Journal, Royal Economic Society, vol. 120(543), pages 215-243, March.
    6. Flam, Sjur Didrik, 1998. "Averaged predictions and the learning of equilibrium play," Journal of Economic Dynamics and Control, Elsevier, vol. 22(6), pages 833-848, June.
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    8. Martin Shubik, 2012. "Mathematical Institutional Economics," Cowles Foundation Discussion Papers 1882, Cowles Foundation for Research in Economics, Yale University.
    9. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    10. Daniel Lacker & Kavita Ramanan, 2019. "Rare Nash Equilibria and the Price of Anarchy in Large Static Games," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 400-422, May.
    11. Christoph March, 2019. "The Behavioral Economics of Artificial Intelligence: Lessons from Experiments with Computer Players," CESifo Working Paper Series 7926, CESifo.
    12. Steve Phelps & Wing Lon Ng, 2014. "A Simulation Analysis Of Herding And Unifractal Scaling Behaviour," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(1), pages 39-58, January.
    13. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    14. Ralph-C. Bayer & Elke Renner & Rupert Sausgruber, 2013. "Confusion and learning in the voluntary contributions game," Experimental Economics, Springer;Economic Science Association, vol. 16(4), pages 478-496, December.
    15. Yang, Jian, 2011. "Asymptotic interpretations for equilibria of nonatomic games," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 491-499.
    16. Mark Paddrik & Roy Hayes & William Scherer & Peter Beling, 2017. "Effects of limit order book information level on market stability metrics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 221-247, July.
    17. Tesfatsion, Leigh, 1998. "Teaching Agent-Based Computational Economics to Graduate Students," ISU General Staff Papers 199807010700001043, Iowa State University, Department of Economics.
    18. Mathieu, Philippe & Morvan, Rémi, 2019. "A deterministic behaviour for realistic price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 33-49.
    19. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    20. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1706.09763. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.