IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1606.06829.html
   My bibliography  Save this paper

Brexit or Bremain ? Evidence from bubble analysis

Author

Listed:
  • Marco Bianchetti
  • Davide Galli
  • Camilla Ricci
  • Angelo Salvatori
  • Marco Scaringi

Abstract

We applied the Johansen-Ledoit-Sornette (JLS) model to detect possible bubbles and crashes related to the Brexit/Bremain referendum scheduled for 23rd June 2016. Our implementation includes an enhanced model calibration using Genetic Algorithms. We selected a few historical financial series sensitive to the Brexit/Bremain scenario, representative of multiple asset classes. We found that equity and currency asset classes show no bubble signals, while rates, credit and real estate show super-exponential behaviour and instabilities typical of bubble regime. Our study suggests that, under the JLS model, equity and currency markets do not expect crashes or sharp rises following the referendum results. Instead, rates and credit markets consider the referendum a risky event, expecting either a Bremain scenario or a Brexit scenario edulcorated by central banks intervention. In the case of real estate, a crash is expected, but its relationship with the referendum results is unclear.

Suggested Citation

  • Marco Bianchetti & Davide Galli & Camilla Ricci & Angelo Salvatori & Marco Scaringi, 2016. "Brexit or Bremain ? Evidence from bubble analysis," Papers 1606.06829, arXiv.org.
  • Handle: RePEc:arx:papers:1606.06829
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1606.06829
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Didier Sornette & Ryan Woodard, & Wanfeng Yan & Wei-Xing Zhou, "undated". "Clarifications to Questions and Criticisms on the Johansen-Ledoit-Sornette bubble Model," Working Papers ETH-RC-11-004, ETH Zurich, Chair of Systems Design.
    2. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    3. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    4. Didier SORNETTE, 2009. "Dragon-Kings, Black Swans and the Prediction of Crises," Swiss Finance Institute Research Paper Series 09-36, Swiss Finance Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Wei-Fong, 2018. "Sentiment and asset price bubble in the precious metals markets," Finance Research Letters, Elsevier, vol. 26(C), pages 106-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riza Demirer & Guilherme Demos & Rangan Gupta & Didier Sornette, 2019. "On the predictability of stock market bubbles: evidence from LPPLS confidence multi-scale indicators," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 843-858, May.
    2. John Fry & McMillan David, 2015. "Stochastic modelling for financial bubbles and policy," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1002152-100, December.
    3. Martin Herdegen & Sebastian Herrmann, 2017. "Strict Local Martingales and Optimal Investment in a Black-Scholes Model with a Bubble," Papers 1711.06679, arXiv.org.
    4. Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.
    5. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    6. Kristoffer Pons Bertelsen, 2019. "Comparing Tests for Identification of Bubbles," CREATES Research Papers 2019-16, Department of Economics and Business Economics, Aarhus University.
    7. Papastamatiou, Konstantinos & Karakasidis, Theodoros, 2022. "Bubble detection in Greek Stock Market: A DS-LPPLS model approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    8. Christopher Lynch & Benjamin Mestel, 2017. "Logistic Model For Stock Market Bubbles And Anti-Bubbles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-24, September.
    9. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    10. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    11. Jerome L Kreuser & Didier Sornette, 2017. "Super-Exponential RE Bubble Model with Efficient Crashes," Swiss Finance Institute Research Paper Series 17-33, Swiss Finance Institute.
    12. Spencer Wheatley & Didier Sornette & Tobias Huber & Max Reppen & Robert N. Gantner, 2018. "Are Bitcoin Bubbles Predictable? Combining a Generalized Metcalfe's Law and the LPPLS Model," Papers 1803.05663, arXiv.org.
    13. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    14. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    15. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    16. Leiss, Matthias & Nax, Heinrich H. & Sornette, Didier, 2015. "Super-exponential growth expectations and the global financial crisis," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 1-13.
    17. Kozłowska, M. & Denys, M. & Wiliński, M. & Link, G. & Gubiec, T. & Werner, T.R. & Kutner, R. & Struzik, Z.R., 2016. "Dynamic bifurcations on financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 126-142.
    18. Daniel Traian Pele & Miruna Mazurencu-Marinescu & Peter Nijkamp, 2013. "Herding Behaviour, Bubbles and Log Periodic Power Laws in Illiquid Stock Markets. A Case Study on the Bucharest Stock Exchange," Tinbergen Institute Discussion Papers 13-109/VIII, Tinbergen Institute.
    19. Kaizoji, Taisei & Leiss, Matthias & Saichev, Alexander & Sornette, Didier, 2015. "Super-exponential endogenous bubbles in an equilibrium model of fundamentalist and chartist traders," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 289-310.
    20. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1606.06829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.