IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v88y2016icp126-142.html
   My bibliography  Save this article

Dynamic bifurcations on financial markets

Author

Listed:
  • Kozłowska, M.
  • Denys, M.
  • Wiliński, M.
  • Link, G.
  • Gubiec, T.
  • Werner, T.R.
  • Kutner, R.
  • Struzik, Z.R.

Abstract

We provide evidence that catastrophic bifurcation breakdowns or transitions, preceded by early warning signs such as flickering phenomena, are present on notoriously unpredictable financial markets. For this we construct robust indicators of catastrophic dynamical slowing down and apply these to identify hallmarks of dynamical catastrophic bifurcation transitions. This is done using daily closing index records for the representative examples of financial markets of small and mid to large capitalisations experiencing a speculative bubble induced by the worldwide financial crisis of 2007-08.

Suggested Citation

  • Kozłowska, M. & Denys, M. & Wiliński, M. & Link, G. & Gubiec, T. & Werner, T.R. & Kutner, R. & Struzik, Z.R., 2016. "Dynamic bifurcations on financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 126-142.
  • Handle: RePEc:eee:chsofr:v:88:y:2016:i:c:p:126-142
    DOI: 10.1016/j.chaos.2016.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916300844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Nawrocki & Tonis Vaga, 2014. "A bifurcation model of market returns," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 509-528, March.
    2. Vasiliki Plerou & Parameswaran Gopikrishnan & H. Eugene Stanley, 2003. "Two-phase behaviour of financial markets," Nature, Nature, vol. 421(6919), pages 130-130, January.
    3. George Chang & James Feigenbaum, 2006. "A Bayesian analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 15-36.
    4. Stanley, H.E. & Buldyrev, S.V. & Franzese, G. & Havlin, S. & Mallamace, F. & Kumar, P. & Plerou, V. & Preis, T., 2010. "Correlated randomness and switching phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(15), pages 2880-2893.
    5. Roehner,Bertrand M., 2002. "Patterns of Speculation," Cambridge Books, Cambridge University Press, number 9780521802635, September.
    6. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    7. Marzena Kozłowska & Andrzej Kasprzak & Ryszard Kutner, 2008. "Fractional Market Model And Its Verification On The Warsaw Stock Exchange," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 453-469.
    8. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    9. Didier SORNETTE, 2009. "Dragon-Kings, Black Swans and the Prediction of Crises," Swiss Finance Institute Research Paper Series 09-36, Swiss Finance Institute.
    10. D. Sornette, "undated". "Dragon-Kings, Black Swans and the Prediction of Crises," Working Papers CCSS-09-005, ETH Zurich, Chair of Systems Design.
    11. J.M. Fry, 2012. "Exogenous and endogenous market crashes as phase transitions in complex financial systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(12), pages 1-6, December.
    12. Fry, John, 2012. "Exogenous and endogenous crashes as phase transitions in complex financial systems," MPRA Paper 36202, University Library of Munich, Germany.
    13. Yannick Malevergne & Didier Sornette, 2006. "Extreme Financial Risks : From Dependence to Risk Management," Post-Print hal-02298069, HAL.
    14. Kaushik Matia & Kazuko Yamasaki, 2005. "Statistical Properties of Demand Fluctuation in the Financial Market," Papers physics/0502084, arXiv.org.
    15. Zeeman, E. C., 1974. "On the unstable behaviour of stock exchanges," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 39-49, March.
    16. Kaushik Matia & Kazuko Yamasaki, 2005. "Statistical properties of demand fluctuation in the financial market," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 513-517.
    17. Vasiliki Plerou & Parameswaran Gopikrishnan & H. Eugene Stanley, 2005. "Two phase behaviour and the distribution of volume," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 519-521.
    18. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duarte Queirós, Sílvio M. & Anteneodo, Celia, 2016. "Complexity in quantitative finance and economics," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 1-2.
    2. Haoyu Wen & Massimo Pica Ciamarra & Siew Ann Cheong, 2018. "How one might miss early warning signals of critical transitions in time series data: A systematic study of two major currency pairs," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-22, March.
    3. Gidea, Marian & Goldsmith, Daniel & Katz, Yuri & Roldan, Pablo & Shmalo, Yonah, 2020. "Topological recognition of critical transitions in time series of cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Fry & McMillan David, 2015. "Stochastic modelling for financial bubbles and policy," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1002152-100, December.
    2. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    3. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    4. Kang, Bo Soo & Park, Chanhi & Ryu, Doojin & Song, Wonho, 2015. "Phase transition phenomenon: A compound measure analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 383-395.
    5. Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    6. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    7. A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Dynamic structural and topological phase transitions on the Warsaw Stock Exchange: A phenomenological approach," Papers 1301.6506, arXiv.org.
    8. Hwang, Keunho & Kang, Jangkoo & Ryu, Doojin, 2010. "Phase-transition behavior in the emerging market: Evidence from the KOSPI200 futures market," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 35-46, January.
    9. Daniel Traian Pele & Miruna Mazurencu-Marinescu & Peter Nijkamp, 2013. "Herding Behaviour, Bubbles and Log Periodic Power Laws in Illiquid Stock Markets. A Case Study on the Bucharest Stock Exchange," Tinbergen Institute Discussion Papers 13-109/VIII, Tinbergen Institute.
    10. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    11. Vladimir Filimonov & Didier Sornette, 2014. "Power law scaling and "Dragon-Kings" in distributions of intraday financial drawdowns," Papers 1407.5037, arXiv.org, revised Apr 2015.
    12. Haas, Armin & Onischka, Mathias & Fucik, Markus, 2013. "Black swans, dragon kings, and Bayesian risk management," Economics Discussion Papers 2013-11, Kiel Institute for the World Economy (IfW Kiel).
    13. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    14. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    15. Vasiliki Plerou & Parameswaran Gopikrishnan & H. Eugene Stanley, 2005. "Two phase behaviour and the distribution of volume," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 519-521.
    16. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2017. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. Part 2," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 45, pages 5-28.
    17. M. Wili'nski & A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Structural and topological phase transitions on the German Stock Exchange," Papers 1301.2530, arXiv.org, revised Jul 2013.
    18. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    19. Wiliński, M. & Sienkiewicz, A. & Gubiec, T. & Kutner, R. & Struzik, Z.R., 2013. "Structural and topological phase transitions on the German Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5963-5973.
    20. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:88:y:2016:i:c:p:126-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.