IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwedp/201311.html
   My bibliography  Save this paper

Black swans, dragon kings, and Bayesian risk management

Author

Listed:
  • Haas, Armin
  • Onischka, Mathias
  • Fucik, Markus

Abstract

In the past decades, risk management in the financial community has been dominated by data-intensive statistical methods which rely on short historical time series to estimate future risk. Many observers consider this approach as a contributor to the current financial crisis, as a long period of low volatility gave rise to an illusion of control from the perspectives of both regulators and the regulated. The crucial question is whether there is an alternative. There are voices which claim that there is no reliable way to detect bubbles, and that crashes can be modeled as exogenous black swans. Others claim that dragon kings, or crashes which result from endogenous dynamics, can be understood and therefore be predicted, at least in principle. The authors suggest that the concept of Bayesian risk management may efficiently mobilize the knowledge, comprehension, and experience of experts in order to understand what happens in financial markets.

Suggested Citation

  • Haas, Armin & Onischka, Mathias & Fucik, Markus, 2013. "Black swans, dragon kings, and Bayesian risk management," Economics Discussion Papers 2013-11, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwedp:201311
    as

    Download full text from publisher

    File URL: http://www.economics-ejournal.org/economics/discussionpapers/2013-11
    Download Restriction: no

    File URL: https://www.econstor.eu/bitstream/10419/69284/1/735977054.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Didier SORNETTE, 2009. "Dragon-Kings, Black Swans and the Prediction of Crises," Swiss Finance Institute Research Paper Series 09-36, Swiss Finance Institute.
    2. D. Sornette, "undated". "Dragon-Kings, Black Swans and the Prediction of Crises," Working Papers CCSS-09-005, ETH Zurich, Chair of Systems Design.
    3. Stephen Morris & Hyun Song Shin, 2008. "Financial Regulation in a System Context," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 39(2 (Fall)), pages 229-274.
    4. Yannick Malevergne & Didier Sornette, 2006. "Extreme Financial Risks : From Dependence to Risk Management," Post-Print hal-02298069, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christa Liedtke & Katrin Bienge & Klaus Wiesen & Jens Teubler & Kathrin Greiff & Michael Lettenmeier & Holger Rohn, 2014. "Resource Use in the Production and Consumption System—The MIPS Approach," Resources, MDPI, vol. 3(3), pages 1-31, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Wili'nski & A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Structural and topological phase transitions on the German Stock Exchange," Papers 1301.2530, arXiv.org, revised Jul 2013.
    2. J. Lorenz & S. Battiston & F. Schweitzer, 2009. "Systemic risk in a unifying framework for cascading processes on networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 441-460, October.
    3. A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Dynamic structural and topological phase transitions on the Warsaw Stock Exchange: A phenomenological approach," Papers 1301.6506, arXiv.org.
    4. Kozłowska, M. & Denys, M. & Wiliński, M. & Link, G. & Gubiec, T. & Werner, T.R. & Kutner, R. & Struzik, Z.R., 2016. "Dynamic bifurcations on financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 126-142.
    5. Wiliński, M. & Sienkiewicz, A. & Gubiec, T. & Kutner, R. & Struzik, Z.R., 2013. "Structural and topological phase transitions on the German Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5963-5973.
    6. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    7. Vladimir Filimonov & Didier Sornette, 2014. "Power law scaling and "Dragon-Kings" in distributions of intraday financial drawdowns," Papers 1407.5037, arXiv.org, revised Apr 2015.
    8. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    9. Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    10. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    11. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    12. Neil Johnson & Guannan Zhao & Eric Hunsader & Jing Meng & Amith Ravindar & Spencer Carran & Brian Tivnan, 2012. "Financial black swans driven by ultrafast machine ecology," Papers 1202.1448, arXiv.org.
    13. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    14. F. A. Nava & V. H. Márquez-Ramírez & F. R. Zúñiga & C. Lomnitz, 2017. "Gutenberg–Richter b-value determination and large-magnitudes sampling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 1-11, May.
    15. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    16. Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014. "Testing the weak-form efficiency of the WTI crude oil futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
    17. Christian Hugo Hoffmann & Charles Djordjevic, 2020. "Complexity, Power Laws and a Humean Argument in Risk Management: The Fundamental Inadequacy of Probability Theory as a Foundation for Modeling Complex Risk in Banking," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(3), pages 155-182, December.
    18. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    19. Rebecca Westphal & Didier Sornette, 2019. "Market Impact and Performance of Arbitrageurs of Financial Bubbles in An Agent-Based Model," Swiss Finance Institute Research Paper Series 19-29, Swiss Finance Institute.
    20. Rodríguez-Martínez, C.M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2021. "A multi-scale symmetry analysis of uninterrupted trends returns in daily financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).

    More about this item

    Keywords

    risk management; financial market regulation; Bayesian inference; Black Swan; risk assessment;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwedp:201311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.