IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1602.02735.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Linear models for the impact of order flow on prices I. Propagators: Transient vs. History Dependent Impact

Author

Listed:
  • Damian Eduardo Taranto
  • Giacomo Bormetti
  • Jean-Philippe Bouchaud
  • Fabrizio Lillo
  • Bence Toth

Abstract

Market impact is a key concept in the study of financial markets and several models have been proposed in the literature so far. The Transient Impact Model (TIM) posits that the price at high frequency time scales is a linear combination of the signs of the past executed market orders, weighted by a so-called propagator function. An alternative description -- the History Dependent Impact Model (HDIM) -- assumes that the deviation between the realised order sign and its expected level impacts the price linearly and permanently. The two models, however, should be extended since prices are a priori influenced not only by the past order flow, but also by the past realisation of returns themselves. In this paper, we propose a two-event framework, where price-changing and non price-changing events are considered separately. Two-event propagator models provide a remarkable improvement of the description of the market impact, especially for large tick stocks, where the events of price changes are very rare and very informative. Specifically the extended approach captures the excess anti-correlation between past returns and subsequent order flow which is missing in one-event models. Our results document the superior performances of the HDIMs even though only in minor relative terms compared to TIMs. This is somewhat surprising, because HDIMs are well grounded theoretically, while TIMs are, strictly speaking, inconsistent.

Suggested Citation

  • Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Toth, 2016. "Linear models for the impact of order flow on prices I. Propagators: Transient vs. History Dependent Impact," Papers 1602.02735, arXiv.org.
  • Handle: RePEc:arx:papers:1602.02735
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1602.02735
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    3. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    4. Jones, Charles M & Kaul, Gautam & Lipson, Marc L, 1994. "Transactions, Volume, and Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 7(4), pages 631-651.
    5. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    6. Damian Eduardo Taranto & Giacomo Bormetti & Fabrizio Lillo, 2014. "The adaptive nature of liquidity taking in limit order books," Papers 1403.0842, arXiv.org, revised Apr 2014.
    7. Iacopo Mastromatteo & Bence Toth & Jean-Philippe Bouchaud, 2013. "Agent-based models for latent liquidity and concave price impact," Papers 1311.6262, arXiv.org, revised Dec 2014.
    8. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    9. J. Donier & J. Bonart & I. Mastromatteo & J.-P. Bouchaud, 2015. "A fully consistent, minimal model for non-linear market impact," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1109-1121, July.
    10. Jonathan Donier & Julius Bonart & Iacopo Mastromatteo & Jean-Philippe Bouchaud, 2014. "A fully consistent, minimal model for non-linear market impact," Papers 1412.0141, arXiv.org, revised Mar 2015.
    11. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    12. Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
    13. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    14. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    15. F. Lillo & Szabolcs Mike & J. Doyne Farmer, 2004. "A theory for long-memory in supply and demand," Papers cond-mat/0412708, arXiv.org, revised Mar 2005.
    16. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.
    17. Tóth, Bence & Palit, Imon & Lillo, Fabrizio & Farmer, J. Doyne, 2015. "Why is equity order flow so persistent?," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 218-239.
    18. Bence Toth & Yves Lemperiere & Cyril Deremble & Joachim de Lataillade & Julien Kockelkoren & Jean-Philippe Bouchaud, 2011. "Anomalous price impact and the critical nature of liquidity in financial markets," Papers 1105.1694, arXiv.org, revised Nov 2011.
    19. Hasbrouck, Joel, 1988. "Trades, quotes, inventories, and information," Journal of Financial Economics, Elsevier, vol. 22(2), pages 229-252, December.
    20. Zoltán Eisler & Jean-Philippe Bouchaud & Julien Kockelkoren, 2012. "The price impact of order book events: market orders, limit orders and cancellations," Quantitative Finance, Taylor & Francis Journals, vol. 12(9), pages 1395-1419, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2020. "A Stationary Kyle Setup: Microfounding propagator models," Working Papers hal-03016486, HAL.
    2. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2021. "A Stationary Kyle Setup: Microfounding propagator models," Post-Print hal-03016486, HAL.
    3. Bonart, Julius & Lillo, Fabrizio, 2018. "A continuous and efficient fundamental price on the discrete order book grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 698-713.
    4. Christopher J. Cho & Timothy J. Norman & Manuel Nunes, 2023. "PRIME: A Price-Reverting Impact Model of a cryptocurrency Exchange," Papers 2305.07559, arXiv.org.
    5. Michele Vodret & Iacopo Mastromatteo & Bence T'oth & Michael Benzaquen, 2020. "A Stationary Kyle Setup: Microfounding propagator models," Papers 2011.10242, arXiv.org, revised Feb 2021.
    6. M. Schneider & F. Lillo, 2019. "Cross-impact and no-dynamic-arbitrage," Quantitative Finance, Taylor & Francis Journals, vol. 19(1), pages 137-154, January.
    7. Martin Theissen & Sebastian M. Krause & Thomas Guhr, 2017. "Regularities and irregularities in order flow data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(11), pages 1-9, November.
    8. Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Toth, 2016. "Linear models for the impact of order flow on prices II. The Mixture Transition Distribution model," Papers 1604.07556, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Toth, 2016. "Linear models for the impact of order flow on prices II. The Mixture Transition Distribution model," Papers 1604.07556, arXiv.org.
    2. Fabrizio Lillo, 2021. "Order flow and price formation," Papers 2105.00521, arXiv.org.
    3. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    4. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    5. Bonart, Julius & Lillo, Fabrizio, 2018. "A continuous and efficient fundamental price on the discrete order book grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 698-713.
    6. Julius Bonart & Fabrizio Lillo, 2016. "A continuous and efficient fundamental price on the discrete order book grid," Papers 1608.00756, arXiv.org, revised Aug 2016.
    7. Martin D. Gould & Mason A. Porter & Sam D. Howison, 2015. "The Long Memory of Order Flow in the Foreign Exchange Spot Market," Papers 1504.04354, arXiv.org, revised Oct 2015.
    8. F. Campigli & G. Bormetti & F. Lillo, 2022. "Measuring price impact and information content of trades in a time-varying setting," Papers 2212.12687, arXiv.org, revised Dec 2023.
    9. Bence Toth & Imon Palit & Fabrizio Lillo & J. Doyne Farmer, 2011. "Why is order flow so persistent?," Papers 1108.1632, arXiv.org, revised Nov 2014.
    10. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    11. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    12. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    13. Jean-Philippe Bouchaud, 2021. "The Inelastic Market Hypothesis: A Microstructural Interpretation," Papers 2108.00242, arXiv.org, revised Jan 2022.
    14. Tóth, Bence & Palit, Imon & Lillo, Fabrizio & Farmer, J. Doyne, 2015. "Why is equity order flow so persistent?," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 218-239.
    15. Zoltan Eisler & Jean-Philippe Bouchaud, 2016. "Price impact without order book: A study of the OTC credit index market," Papers 1609.04620, arXiv.org.
    16. Matthieu Wyart & Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters & Michele Vettorazzo, 2006. "Relation between Bid-Ask Spread, Impact and Volatility in Double Auction Markets," Science & Finance (CFM) working paper archive 500067, Science & Finance, Capital Fund Management.
    17. Bence Toth & Zoltan Eisler & Jean-Philippe Bouchaud, 2017. "The short-term price impact of trades is universal," Papers 1702.08029, arXiv.org, revised Jan 2018.
    18. Ioanna-Yvonni Tsaknaki & Fabrizio Lillo & Piero Mazzarisi, 2023. "Online Learning of Order Flow and Market Impact with Bayesian Change-Point Detection Methods," Papers 2307.02375, arXiv.org, revised May 2024.
    19. Fr'ed'eric Bucci & Michael Benzaquen & Fabrizio Lillo & Jean-Philippe Bouchaud, 2019. "Slow decay of impact in equity markets: insights from the ANcerno database," Papers 1901.05332, arXiv.org, revised Jan 2019.
    20. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1602.02735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.