IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1604.07556.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Linear models for the impact of order flow on prices II. The Mixture Transition Distribution model

Author

Listed:
  • Damian Eduardo Taranto
  • Giacomo Bormetti
  • Jean-Philippe Bouchaud
  • Fabrizio Lillo
  • Bence Toth

Abstract

Modeling the impact of the order flow on asset prices is of primary importance to understand the behavior of financial markets. Part I of this paper reported the remarkable improvements in the description of the price dynamics which can be obtained when one incorporates the impact of past returns on the future order flow. However, impact models presented in Part I consider the order flow as an exogenous process, only characterized by its two-point correlations. This assumption seriously limits the forecasting ability of the model. Here we attempt to model directly the stream of discrete events with a so-called Mixture Transition Distribution (MTD) framework, introduced originally by Raftery (1985). We distinguish between price-changing and non price-changing events and combine them with the order sign in order to reduce the order flow dynamics to the dynamics of a four-state discrete random variable. The MTD represents a parsimonious approximation of a full high-order Markov chain. The new approach captures with adequate realism the conditional correlation functions between signed events for both small and large tick stocks and signature plots. From a methodological viewpoint, we discuss a novel and flexible way to calibrate a large class of MTD models with a very large number of parameters. In spite of this large number of parameters, an out-of-sample analysis confirms that the model does not overfit the data.

Suggested Citation

  • Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Toth, 2016. "Linear models for the impact of order flow on prices II. The Mixture Transition Distribution model," Papers 1604.07556, arXiv.org.
  • Handle: RePEc:arx:papers:1604.07556
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1604.07556
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    3. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    4. Damian Eduardo Taranto & Giacomo Bormetti & Fabrizio Lillo, 2014. "The adaptive nature of liquidity taking in limit order books," Papers 1403.0842, arXiv.org, revised Apr 2014.
    5. Iacopo Mastromatteo & Bence Toth & Jean-Philippe Bouchaud, 2013. "Agent-based models for latent liquidity and concave price impact," Papers 1311.6262, arXiv.org, revised Dec 2014.
    6. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    7. J. Donier & J. Bonart & I. Mastromatteo & J.-P. Bouchaud, 2015. "A fully consistent, minimal model for non-linear market impact," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1109-1121, July.
    8. Jonathan Donier & Julius Bonart & Iacopo Mastromatteo & Jean-Philippe Bouchaud, 2014. "A fully consistent, minimal model for non-linear market impact," Papers 1412.0141, arXiv.org, revised Mar 2015.
    9. Andre Berchtold, 2001. "Estimation in the Mixture Transition Distribution Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(4), pages 379-397, July.
    10. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    11. F. Lillo & Szabolcs Mike & J. Doyne Farmer, 2004. "A theory for long-memory in supply and demand," Papers cond-mat/0412708, arXiv.org, revised Mar 2005.
    12. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.
    13. Tóth, Bence & Palit, Imon & Lillo, Fabrizio & Farmer, J. Doyne, 2015. "Why is equity order flow so persistent?," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 218-239.
    14. Bence Toth & Yves Lemperiere & Cyril Deremble & Joachim de Lataillade & Julien Kockelkoren & Jean-Philippe Bouchaud, 2011. "Anomalous price impact and the critical nature of liquidity in financial markets," Papers 1105.1694, arXiv.org, revised Nov 2011.
    15. Hasbrouck, Joel, 1988. "Trades, quotes, inventories, and information," Journal of Financial Economics, Elsevier, vol. 22(2), pages 229-252, December.
    16. Zoltán Eisler & Jean-Philippe Bouchaud & Julien Kockelkoren, 2012. "The price impact of order book events: market orders, limit orders and cancellations," Quantitative Finance, Taylor & Francis Journals, vol. 12(9), pages 1395-1419, September.
    17. Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Toth, 2016. "Linear models for the impact of order flow on prices I. Propagators: Transient vs. History Dependent Impact," Papers 1602.02735, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2020. "A Stationary Kyle Setup: Microfounding propagator models," Working Papers hal-03016486, HAL.
    2. Bonart, Julius & Lillo, Fabrizio, 2018. "A continuous and efficient fundamental price on the discrete order book grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 698-713.
    3. Michele Vodret & Iacopo Mastromatteo & Bence T'oth & Michael Benzaquen, 2020. "A Stationary Kyle Setup: Microfounding propagator models," Papers 2011.10242, arXiv.org, revised Feb 2021.
    4. Martin Theissen & Sebastian M. Krause & Thomas Guhr, 2017. "Regularities and irregularities in order flow data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(11), pages 1-9, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Toth, 2016. "Linear models for the impact of order flow on prices I. Propagators: Transient vs. History Dependent Impact," Papers 1602.02735, arXiv.org.
    2. Fabrizio Lillo, 2021. "Order flow and price formation," Papers 2105.00521, arXiv.org.
    3. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    4. Bonart, Julius & Lillo, Fabrizio, 2018. "A continuous and efficient fundamental price on the discrete order book grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 698-713.
    5. Martin D. Gould & Mason A. Porter & Sam D. Howison, 2015. "The Long Memory of Order Flow in the Foreign Exchange Spot Market," Papers 1504.04354, arXiv.org, revised Oct 2015.
    6. Julius Bonart & Fabrizio Lillo, 2016. "A continuous and efficient fundamental price on the discrete order book grid," Papers 1608.00756, arXiv.org, revised Aug 2016.
    7. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    8. Bence Toth & Imon Palit & Fabrizio Lillo & J. Doyne Farmer, 2011. "Why is order flow so persistent?," Papers 1108.1632, arXiv.org, revised Nov 2014.
    9. Zoltan Eisler & Jean-Philippe Bouchaud, 2016. "Price impact without order book: A study of the OTC credit index market," Papers 1609.04620, arXiv.org.
    10. Bence Toth & Zoltan Eisler & Jean-Philippe Bouchaud, 2017. "The short-term price impact of trades is universal," Papers 1702.08029, arXiv.org, revised Jan 2018.
    11. Ioanna-Yvonni Tsaknaki & Fabrizio Lillo & Piero Mazzarisi, 2023. "Online Learning of Order Flow and Market Impact with Bayesian Change-Point Detection Methods," Papers 2307.02375, arXiv.org, revised May 2024.
    12. Fr'ed'eric Bucci & Michael Benzaquen & Fabrizio Lillo & Jean-Philippe Bouchaud, 2019. "Slow decay of impact in equity markets: insights from the ANcerno database," Papers 1901.05332, arXiv.org, revised Jan 2019.
    13. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    14. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    15. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.
    16. Frédéric Bucci & Michael Benzaquen & Fabrizio Lillo & Jean-Philippe Bouchaud, 2019. "Slow Decay of Impact in Equity Markets: Insights from the ANcerno Database," Post-Print hal-02323357, HAL.
    17. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    18. F. Campigli & G. Bormetti & F. Lillo, 2022. "Measuring price impact and information content of trades in a time-varying setting," Papers 2212.12687, arXiv.org, revised Dec 2023.
    19. Jean-Philippe Bouchaud, 2021. "The Inelastic Market Hypothesis: A Microstructural Interpretation," Papers 2108.00242, arXiv.org, revised Jan 2022.
    20. Paolo Barucca & Fabrizio Lillo, 2017. "Behind the price: on the role of agent's reflexivity in financial market microstructure," Papers 1708.07047, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1604.07556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.