IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1403.1183.html
   My bibliography  Save this paper

On the Frequency of Drawdowns for Brownian Motion Processes

Author

Listed:
  • David Landriault
  • Bin Li
  • Hongzhong Zhang

Abstract

Drawdowns measuring the decline in value from the historical running maxima over a given period of time, are considered as extremal events from the standpoint of risk management. To date, research on the topic has mainly focus on the side of severity by studying the first drawdown over certain pre-specified size. In this paper, we extend the discussion by investigating the frequency of drawdowns, and some of their inherent characteristics. We consider two types of drawdown time sequences depending on whether a historical running maximum {is reset or not}. For each type, we study the frequency rate of drawdowns, the Laplace transform of the $n$-th drawdown time, the distribution of the running maximum and the value process at the $n$-th drawdown time, as well as some other quantities of interest. Interesting relationships between these two drawdown time sequences are also established. Finally, insurance policies protecting against the risk of frequent drawdowns are also proposed and priced.

Suggested Citation

  • David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
  • Handle: RePEc:arx:papers:1403.1183
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1403.1183
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    2. Foort Hamelink & Martin Hoesli, 2004. "Maximum drawdown and the allocation to real estate," Journal of Property Research, Taylor & Francis Journals, vol. 21(1), pages 5-29, January.
    3. Olympia Hadjiliadis & Jan Vecer, 2006. "Drawdowns preceding rallies in the Brownian motion model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 403-409.
    4. Pospisil, Libor & Vecer, Jan & Hadjiliadis, Olympia, 2009. "Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2563-2578, August.
    5. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276.
    6. Libor Pospisil & Jan Vecer, 2010. "Portfolio sensitivity to changes in the maximum and the maximum drawdown," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 617-627.
    7. Raphaël Douady & A.N. Shiryaev & Marc Yor, 2000. "On Probability Characteristics of "Downfalls" in a Standard Brownian Motion," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01477104, HAL.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1403.1183. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.