IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i8p2563-2578.html
   My bibliography  Save this article

Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups

Author

Listed:
  • Pospisil, Libor
  • Vecer, Jan
  • Hadjiliadis, Olympia

Abstract

This paper studies drawdown and drawup processes in a general diffusion model. The main result is a formula for the joint distribution of the running minimum and the running maximum of the process stopped at the time of the first drop of size a. As a consequence, we obtain the probabilities that a drawdown of size a precedes a drawup of size b and vice versa. The results are applied to several examples of diffusion processes, such as drifted Brownian motion, Ornstein-Uhlenbeck process, and Cox-Ingersoll-Ross process.

Suggested Citation

  • Pospisil, Libor & Vecer, Jan & Hadjiliadis, Olympia, 2009. "Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2563-2578, August.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:8:p:2563-2578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00015-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikeghbali, Ashkan, 2006. "A class of remarkable submartingales," Stochastic Processes and their Applications, Elsevier, vol. 116(6), pages 917-938, June.
    2. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baurdoux, Erik J. & Palmowski, Z & Pistorius, Martijn R, 2017. "On future drawdowns of Lévy processes," LSE Research Online Documents on Economics 84342, London School of Economics and Political Science, LSE Library.
    2. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    3. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Fair valuation of L\'evy-type drawdown-drawup contracts with general insured and penalty functions," Papers 1712.04418, arXiv.org, revised Feb 2018.
    4. Aleksandar Mijatovic & Martijn R. Pistorius, 2011. "On the drawdown of completely asymmetric Levy processes," Papers 1103.1460, arXiv.org, revised Sep 2012.
    5. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    6. Grigory Temnov, 2015. "Analysis of Ornstein-Uhlenbeck process stopped at maximum drawdown and application to trading strategies with trailing stops," Papers 1507.01610, arXiv.org.
    7. Zhenyu Cui, 2014. "Omega risk model with tax," Papers 1403.7680, arXiv.org.
    8. David Landriault & Bin Li & Hongzhong Zhang, 2017. "A Unified Approach for Drawdown (Drawup) of Time-Homogeneous Markov Processes," Papers 1702.07786, arXiv.org.
    9. Mijatović, Aleksandar & Pistorius, Martijn R., 2012. "On the drawdown of completely asymmetric Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3812-3836.
    10. Gapeev, Pavel V. & Rodosthenous, Neofytos, 2016. "Perpetual American options in diffusion-type models with running maxima and drawdowns," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2038-2061.
    11. repec:eee:spapps:v:127:y:2017:i:8:p:2679-2698 is not listed on IDEAS
    12. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    13. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:8:p:2563-2578. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.