IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v10y2010i6p617-627.html
   My bibliography  Save this article

Portfolio sensitivity to changes in the maximum and the maximum drawdown

Author

Listed:
  • Libor Pospisil
  • Jan Vecer

Abstract

In this article, we define new 'Greeks' for financial derivatives: sensitivities to the running maximum and the running maximum drawdown of an underlying asset. Some types of portfolios, such as the net asset value of a hedge fund or performance fees, are sensitive to these parameters. In order to illustrate the concept of the new 'Greeks', we derive probabilistic representations of sensitivities for two classes of financial contracts: forwards on the maximum drawdown and lookback options. These results allow us to interpret the delta-hedge of the contracts in a novel way.

Suggested Citation

  • Libor Pospisil & Jan Vecer, 2010. "Portfolio sensitivity to changes in the maximum and the maximum drawdown," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 617-627.
  • Handle: RePEc:taf:quantf:v:10:y:2010:i:6:p:617-627
    DOI: 10.1080/14697680903008751
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680903008751
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680903008751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    2. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    3. Eberlein, Ernst & Papapantoleon, Antonis, 2005. "Equivalence of floating and fixed strike Asian and lookback options," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 31-40, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun-Yong Choi & Ji-Hun Yoon & Junkee Jeon, 2019. "Pricing of Fixed-Strike Lookback Options on Assets with Default Risk," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, January.
    2. San‐Lin Chung & Yi‐Ta Huang & Pai‐Ta Shih & Jr‐Yan Wang, 2019. "Semistatic hedging and pricing American floating strike lookback options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(4), pages 418-434, April.
    3. Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
    4. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    5. Kristoffer Glover & Hardy Hulley & Goran Peskir, 2011. "Three-Dimensional Brownian Motion and the Golden Ratio Rule," Research Paper Series 295, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Marcos Escobar-Anel & Matt Davison & Yichen Zhu, 2022. "Derivatives-based portfolio decisions: an expected utility insight," Annals of Finance, Springer, vol. 18(2), pages 217-246, June.
    7. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    8. Sergey Badikov & Antoine Jacquier & Daphne Qing Liu & Patrick Roome, 2016. "No-arbitrage bounds for the forward smile given marginals," Papers 1603.06389, arXiv.org, revised Oct 2016.
    9. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. Ariel Neufeld, 2017. "Buy-and-Hold Property for Fully Incomplete Markets when Super-replicating Markovian Claims," Papers 1707.01178, arXiv.org, revised Oct 2018.
    12. Hans-Peter Bermin, 2000. "Hedging lookback and partial lookback options using Malliavin calculus," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(2), pages 75-100.
    13. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    14. Patrick Cheridito & Michael Kupper & Ludovic Tangpi, 2016. "Duality formulas for robust pricing and hedging in discrete time," Papers 1602.06177, arXiv.org, revised Sep 2017.
    15. Peter Buchen & Otto Konstandatos, 2009. "A New Approach to Pricing Double-Barrier Options with Arbitrary Payoffs and Exponential Boundaries," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 497-515.
    16. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    17. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2015. "Model-free Superhedging Duality," Papers 1506.06608, arXiv.org, revised May 2016.
    18. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    19. Lim, Tongseok, 2020. "Optimal martingale transport between radially symmetric marginals in general dimensions," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1897-1912.
    20. Ulm, Eric R., 2014. "Analytic solution for ratchet guaranteed minimum death benefit options under a variety of mortality laws," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 14-23.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:10:y:2010:i:6:p:617-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.