IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v7y2000i2p75-100.html
   My bibliography  Save this article

Hedging lookback and partial lookback options using Malliavin calculus

Author

Listed:
  • Hans-Peter Bermin

Abstract

The paper considers a Black and Scholes economy with constant coefficients. A contingent claim is said to be simple if the payoff at maturity is a function of the value of the underlying security at maturity. To replicate a simple contingent claim one uses so called delta-hedging, and the well-known strategy is derived from Ito calculus and the theory of partial differentiable equations. However, hedging path-dependent options require other tools since the price processes, in general, no longer have smooth stochastic differentials. It is shown how Malliavin calculus can be used to derive the hedging strategy for any kind of path-dependent options, and in particular for lookback and partial lookback options.

Suggested Citation

  • Hans-Peter Bermin, 2000. "Hedging lookback and partial lookback options using Malliavin calculus," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(2), pages 75-100.
  • Handle: RePEc:taf:apmtfi:v:7:y:2000:i:2:p:75-100
    DOI: 10.1080/13504860010014052
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860010014052
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    2. Jérôme B. Detemple & René Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, February.
    3. P. Carr, 1995. "Two extensions to barrier option valuation," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(3), pages 173-209.
    4. Conze, Antoine & Viswanathan, 1991. " Path Dependent Options: The Case of Lookback Options," Journal of Finance, American Finance Association, vol. 46(5), pages 1893-1907, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Hangsuck, 2003. "Pricing equity-indexed annuities with path-dependent options," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 677-690, December.
    2. Yuji Hishida & Kenji Yasutomi, 2009. "Asymptotic behavior of prices of path dependent options," Papers 0911.5579, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:7:y:2000:i:2:p:75-100. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.