IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v13y2003i1p99-113.html
   My bibliography  Save this article

Monte Carlo Evaluation of Greeks for Multidimensional Barrier and Lookback Options

Author

Listed:
  • Guillaume Bernis
  • Emmanuel Gobet
  • Arturo Kohatsu‐Higa

Abstract

In this paper, we consider the problem of the numerical computation of Greeks for a multidimensional barrier and lookback style options: the payoff function depends in a rather general way on the minima and maxima of the coordinates of the d‐dimensional underlying asset process. Using Malliavin calculus techniques, we derive additional weights that enable computation of the Greeks using Monte Carlo simulations. Numerical experiments confirm the efficiency of the method. This work is a multidimensional extension of previous results (see Gobet and Kohatsu‐Higa 2001).

Suggested Citation

  • Guillaume Bernis & Emmanuel Gobet & Arturo Kohatsu‐Higa, 2003. "Monte Carlo Evaluation of Greeks for Multidimensional Barrier and Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 99-113, January.
  • Handle: RePEc:bla:mathfi:v:13:y:2003:i:1:p:99-113
    DOI: 10.1111/1467-9965.00008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9965.00008
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9965.00008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hans-Peter Bermin, 2000. "Hedging lookback and partial lookback options using Malliavin calculus," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(2), pages 75-100.
    2. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    3. Paul Glasserman & David D. Yao, 1992. "Some Guidelines and Guarantees for Common Random Numbers," Management Science, INFORMS, vol. 38(6), pages 884-908, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Jeff Hong & Sandeep Juneja & Jun Luo, 2014. "Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 848-865, November.
    2. Nakatsu, Tomonori, 2023. "On density functions related to discrete time maximum of some one-dimensional diffusion processes," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    3. Kiseop Lee & Seongje Lim & Hyungbin Park, 2022. "Option pricing under path-dependent stock models," Papers 2211.10953, arXiv.org, revised Aug 2023.
    4. Tomonori Nakatsu, 2019. "Some Properties of Density Functions on Maxima of Solutions to One-Dimensional Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 32(4), pages 1746-1779, December.
    5. Arturo Kohatsu & Montero Miquel, 2003. "Malliavin calculus in finance," Economics Working Papers 672, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Muroi, Yoshifumi & Suda, Shintaro, 2017. "Computation of Greeks in jump-diffusion models using discrete Malliavin calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 140(C), pages 69-93.
    7. Tomonori Nakatsu, 2017. "An Integration by Parts Type Formula for Stopping Times and its Application," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 751-773, September.
    8. Hideharu Funahashi & Masaaki Kijima, 2016. "Analytical pricing of single barrier options under local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 867-886, June.
    9. Dorival Le~ao & Alberto Ohashi & Vinicius Siqueira, 2013. "A general Multidimensional Monte Carlo Approach for Dynamic Hedging under stochastic volatility," Papers 1308.1704, arXiv.org, revised Aug 2013.
    10. Nicola Cufaro Petroni & Piergiacomo Sabino, 2013. "Multidimensional quasi-Monte Carlo Malliavin Greeks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(2), pages 199-224, November.
    11. Guangwu Liu & L. Jeff Hong, 2011. "Kernel Estimation of the Greeks for Options with Discontinuous Payoffs," Operations Research, INFORMS, vol. 59(1), pages 96-108, February.
    12. Shaolong Tong & Guangwu Liu, 2016. "Importance Sampling for Option Greeks with Discontinuous Payoffs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 223-235, May.
    13. Wang, Chuan-Ju & Kao, Ming-Yang, 2016. "Optimal search for parameters in Monte Carlo simulation for derivative pricing," European Journal of Operational Research, Elsevier, vol. 249(2), pages 683-690.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    2. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    3. Benhamou, Eric, 2000. "A generalisation of Malliavin weighted scheme for fast computation of the Greeks," LSE Research Online Documents on Economics 119105, London School of Economics and Political Science, LSE Library.
    4. Eric Benhamou, 2000. "A Generalisation of Malliavin Weighted Scheme for Fast Computation of the Greeks," FMG Discussion Papers dp350, Financial Markets Group.
    5. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    6. Galai, Dan & Raviv, Alon & Wiener, Zvi, 2007. "Liquidation triggers and the valuation of equity and debt," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3604-3620, December.
    7. Xiaoqun Wang, 2016. "Handling Discontinuities in Financial Engineering: Good Path Simulation and Smoothing," Operations Research, INFORMS, vol. 64(2), pages 297-314, April.
    8. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Delta Hedging Under Two Price Distribution Assumptions By Likelihood Ratio," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 6(1), pages 25-34.
    9. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org.
    10. Michael C. Fu & Jian-Qiang Hu & Chun-Hung Chen & Xiaoping Xiong, 2007. "Simulation Allocation for Determining the Best Design in the Presence of Correlated Sampling," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 101-111, February.
    11. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Gradient Estimation Techniques For European Call Options," Accounting & Taxation, The Institute for Business and Finance Research, vol. 4(1), pages 75-81.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Arturo Kohatsu-Higa & Miquel Montero, 2001. "An application of Malliavin Calculus to Finance," Papers cond-mat/0111563, arXiv.org.
    14. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    15. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Asymptotic Properties of Monte Carlo Estimators of Derivatives," Management Science, INFORMS, vol. 51(11), pages 1657-1675, November.
    16. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    17. Fard, Farzad Alavi & Siu, Tak Kuen, 2013. "Pricing participating products with Markov-modulated jump–diffusion process: An efficient numerical PIDE approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 712-721.
    18. Pellegrino, Tommaso & Sabino, Piergiacomo, 2014. "On the use of the moment-matching technique for pricing and hedging multi-asset spread options," Energy Economics, Elsevier, vol. 45(C), pages 172-185.
    19. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    20. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:13:y:2003:i:1:p:99-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.