IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1308.1704.html
   My bibliography  Save this paper

A general Multidimensional Monte Carlo Approach for Dynamic Hedging under stochastic volatility

Author

Listed:
  • Dorival Le~ao
  • Alberto Ohashi
  • Vinicius Siqueira

Abstract

In this work, we introduce a Monte Carlo method for the dynamic hedging of general European-type contingent claims in a multidimensional Brownian arbitrage-free market. Based on bounded variation martingale approximations for Galtchouk-Kunita-Watanabe decompositions, we propose a feasible and constructive methodology which allows us to compute pure hedging strategies w.r.t arbitrary square-integrable claims in incomplete markets. In particular, the methodology can be applied to quadratic hedging-type strategies for fully path-dependent options with stochastic volatility and discontinuous payoffs. We illustrate the method with numerical examples based on generalized Follmer-Schweizer decompositions, locally-risk minimizing and mean-variance hedging strategies for vanilla and path-dependent options written on local volatility and stochastic volatility models.

Suggested Citation

  • Dorival Le~ao & Alberto Ohashi & Vinicius Siqueira, 2013. "A general Multidimensional Monte Carlo Approach for Dynamic Hedging under stochastic volatility," Papers 1308.1704, arXiv.org, revised Aug 2013.
  • Handle: RePEc:arx:papers:1308.1704
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1308.1704
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesca Biagini & Paolo Guasoni & Maurizio Pratelli, 2000. "Mean‐Variance Hedging for Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 109-123, April.
    2. Rheinländer, Thorsten & Schweizer, Martin, 1997. "On L2-projections on a space of stochastic integrals," SFB 373 Discussion Papers 1997,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Guillaume Bernis & Emmanuel Gobet & Arturo Kohatsu‐Higa, 2003. "Monte Carlo Evaluation of Greeks for Multidimensional Barrier and Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 99-113, January.
    4. Aleš Černý & Jan Kallsen, 2008. "Mean–Variance Hedging And Optimal Investment In Heston'S Model With Correlation," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 473-492, July.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Christian Gourieroux & Jean Paul Laurent & Huyên Pham, 1998. "Mean‐Variance Hedging and Numéraire," Mathematical Finance, Wiley Blackwell, vol. 8(3), pages 179-200, July.
    7. Schweizer, Martin, 1991. "Option hedging for semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 339-363, April.
    8. David Heath & Eckhard Platen & Martin Schweizer, 2001. "A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 385-413, October.
    9. Kramkov, D. & Sîrbu, M., 2007. "Asymptotic analysis of utility-based hedging strategies for small number of contingent claims," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1606-1620, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, January.
    2. Vicky Henderson & David Hobson & Sam Howison & Tino Kluge, 2003. "A Comparison of q-optimal Option Prices in a Stochastic Volatility Model with Correlation," OFRC Working Papers Series 2003mf02, Oxford Financial Research Centre.
    3. Wanyang Dai, 2014. "Mean-variance hedging based on an incomplete market with external risk factors of non-Gaussian OU processes," Papers 1410.0991, arXiv.org, revised Aug 2015.
    4. David Hobson, 2004. "STOCHASTIC VOLATILITY MODELS, CORRELATION, AND THE q‐OPTIMAL MEASURE," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 537-556, October.
    5. Michael Mania & Revaz Tevzadze, 2008. "Backward Stochastic PDEs Related to the Utility Maximization Problem," ICER Working Papers - Applied Mathematics Series 07-2008, ICER - International Centre for Economic Research.
    6. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    7. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    8. David Heath & Simon Hurst & Eckhard Platen, 1999. "Modelling the Stochastic Dynamics of Volatility for Equity Indices," Research Paper Series 7, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Sai Hung Marten Ting & Christian-Oliver Ewald, 2013. "On the performance of asymptotic locally risk minimising hedges in the Heston stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 939-954, May.
    10. M. Mania & R. Tevzadze, 2003. "Backward Stochastic PDE and Imperfect Hedging," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(07), pages 663-692.
    11. Jan Kallsen & Arnd Pauwels, 2011. "Variance-Optimal Hedging for Time-Changed Levy Processes," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(1), pages 1-28.
    12. Carol Alexander & Leonardo M. Nogueira, 2006. "Hedging Options with Scale-Invariant Models," ICMA Centre Discussion Papers in Finance icma-dp2006-03, Henley Business School, University of Reading.
    13. Maciej Augustyniak & Frédéric Godin & Clarence Simard, 2017. "Assessing the effectiveness of local and global quadratic hedging under GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1305-1318, September.
    14. Aleš Černý, 2007. "Optimal Continuous‐Time Hedging With Leptokurtic Returns," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 175-203, April.
    15. Vicky Henderson & David Hobson & Sam Howison & Tino Kluge, 2005. "A Comparison of Option Prices Under Different Pricing Measures in a Stochastic Volatility Model with Correlation," Review of Derivatives Research, Springer, vol. 8(1), pages 5-25, June.
    16. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Pricing and hedging contingent claims using variance and higher order moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 531-550, April.
    17. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    18. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    19. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    20. repec:dau:papers:123456789/12663 is not listed on IDEAS
    21. Liao Wang & Johannes Wissel, 2013. "Mean-variance hedging with oil futures," Finance and Stochastics, Springer, vol. 17(4), pages 641-683, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1308.1704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.