IDEAS home Printed from https://ideas.repec.org/p/icr/wpmath/07-2008.html
   My bibliography  Save this paper

Backward Stochastic PDEs Related to the Utility Maximization Problem

Author

Listed:
  • Michael Mania

    ()

  • Revaz Tevzadze

    ()

Abstract

We study utility maximization problem for general utility functions using dynamic programming approach. We consider an incomplete financial market model, where the dynamics of asset prices are described by an Rd-valued continuous semimartingale. Under some regularity assumptions we derive backward stochastic partial differential equation (BSPDE) related directly to the primal problem and show that the strategy is optimal if and only if the corresponding wealth process satisfies a certain forward-SDE. As examples the cases of power, exponential and logarithmic utilities are considered

Suggested Citation

  • Michael Mania & Revaz Tevzadze, 2008. "Backward Stochastic PDEs Related to the Utility Maximization Problem," ICER Working Papers - Applied Mathematics Series 07-2008, ICER - International Centre for Economic Research.
  • Handle: RePEc:icr:wpmath:07-2008
    as

    Download full text from publisher

    File URL: http://www.biblioecon.unito.it/biblioservizi/RePEc/icr/wp2008/ICERwp07-08.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Rheinländer, Thorsten & Schweizer, Martin, 1997. "On L2-projections on a space of stochastic integrals," SFB 373 Discussion Papers 1997,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Norbert Hofmann & Eckhard Platen & Martin Schweizer, 1992. "Option Pricing Under Incompleteness and Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 2(3), pages 153-187.
    3. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Manfred Schäl, 1994. "On Quadratic Cost Criteria for Option Hedging," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 121-131, February.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    6. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71.
    7. Martin Schweizer & Christophe Stricker & Freddy Delbaen & Pascale Monat & Walter Schachermayer, 1997. "Weighted norm inequalities and hedging in incomplete markets," Finance and Stochastics, Springer, vol. 1(3), pages 181-227.
    8. Mania, M., 2000. "A general problem of an optimal equivalent change of measure and contingent claim pricing in an incomplete market," Stochastic Processes and their Applications, Elsevier, vol. 90(1), pages 19-42, November.
    9. Christian Gourieroux & Jean Paul Laurent & Huyên Pham, 1998. "Mean-Variance Hedging and Numéraire," Mathematical Finance, Wiley Blackwell, vol. 8(3), pages 179-200.
    10. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    11. Norbert Hofmann & Eckhard Platen & Martin Schweizer, 1992. "Option Pricing Under Incompleteness and Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 2(3), pages 153-187.
    12. Martin Schweizer & HuyËn Pham & (*), Thorsten RheinlÄnder, 1998. "Mean-variance hedging for continuous processes: New proofs and examples," Finance and Stochastics, Springer, vol. 2(2), pages 173-198.
    13. David Heath & Eckhard Platen & Martin Schweizer, 2001. "A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 385-413.
    14. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    15. Freddy Delbaen & Peter Grandits & Thorsten Rheinländer & Dominick Samperi & Martin Schweizer & Christophe Stricker, 2002. "Exponential Hedging and Entropic Penalties," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 99-123.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    17. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52.
    18. Francesca Biagini & Paolo Guasoni & Maurizio Pratelli, 2000. "Mean-Variance Hedging for Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 109-123.
    19. Michael Mania & Martin Schweizer, 2005. "Dynamic exponential utility indifference valuation," Papers math/0508489, arXiv.org.
    20. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276.
    21. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "Hedging Derivative Securities and Incomplete Markets: An (epsilon)-Arbitrage Approach," Operations Research, INFORMS, vol. 49(3), pages 372-397, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia Ceci & Anna Gerardi, 2011. "Utility indifference valuation for jump risky assets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 34(2), pages 85-120, November.
    2. repec:dau:papers:123456789/7101 is not listed on IDEAS

    More about this item

    Keywords

    Backward stochastic partial di erential equation; utility maximization problem; semimartingale; incomplete markets;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:icr:wpmath:07-2008. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Pellegrino). General contact details of provider: http://edirc.repec.org/data/icerrit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.